Chitosan oligosaccharides: A potential therapeutic agent for inhibiting foam cell formation in atherosclerosis

Foam cell formation is a key hallmark in atherosclerosis and associated cardiovascular diseases (CVDs). The potential anti-atherosclerotic potential of chitosan oligosaccharides (COS) was investigated using oxLDL-treated RAW264.7 murine cells. COS treatment led to a significant inhibition of lipid a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2024-12, Vol.282 (Pt 4), p.137186, Article 137186
Hauptverfasser: Le, My Phuong Thi, Marasinghe, Chathuri Kaushalya, Je, Jae-Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Foam cell formation is a key hallmark in atherosclerosis and associated cardiovascular diseases (CVDs). The potential anti-atherosclerotic potential of chitosan oligosaccharides (COS) was investigated using oxLDL-treated RAW264.7 murine cells. COS treatment led to a significant inhibition of lipid accumulation, as demonstrated by Oil Red O staining, and reduced levels of total cholesterol, free cholesterol, cholesterol esters, and triglycerides in.oxLDL-treated RAW264.7 cells. COS blocked cholesterol influx through down-regulating class A1 scavenger receptors (SR-A1) and cluster of differentiation 36 (CD36) expression and stimulated cholesterol efflux through up-regulating ABC transporters ABCA-1 and ABCG-1 expressions. Additionally, COS treatment stimulated nuclear signaling pathways involving peroxisome proliferator-activated receptor-γ (PPAR-γ) and liver X receptor α (LXR-α), and also led to the phosphorylation of AMP-activated protein kinase (AMPK). COS further demonstrated anti-inflammatory effects by inhibiting the production of pro-inflammatory cytokines and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in oxLDL-treated RAW264.7 cells, through suppression of NF-κB signaling. Furthermore, COS alleviated oxidative stress induced by oxLDL by activating Nrf2 signaling and enhancing the expression of antioxidant genes, including heme oxygenase-1 (HO-1), superoxide dismutase (SOD), glutathione peroxidase (Gpx), and catalase (CAT). In conclusion, COS can be beneficial in preventing atherosclerosis and related diseases.
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2024.137186