Potential-Dependent ATR-SEIRAS and EQCM‑D Analysis of Interphase Formation in Zinc Battery Electrolytes
With the heightening interest in bivalent battery technology, there arises a necessity for a thorough investigation into zinc-ion battery (ZIB) electrolytes, accommodating their chemical attributes and potential-dependent structural dynamics. While the phenomenon of in situ solid electrolyte interph...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-11, Vol.16 (45), p.63026-63038 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the heightening interest in bivalent battery technology, there arises a necessity for a thorough investigation into zinc-ion battery (ZIB) electrolytes, accommodating their chemical attributes and potential-dependent structural dynamics. While the phenomenon of in situ solid electrolyte interphase formation is extensively documented in lithium-ion batteries, its analogous occurrences in ZIBs remain limited. Herein is a comparative study of three zinc electrolytes of interest: ZnSO4, ZnOTF, and Zn(TFSI)2/LiTFSI hybrid water-in-salt electrolyte. Additionally, the impact of an acetonitrile additive is scrutinized, with a comparative assessment of the interfacial behavior in aqueous solutions. Utilizing ATR-SEIRAS, potential-dependent alterations in the composition of the electrolyte/electrode interface were monitored, while EQCM-D facilitated a comprehensive understanding of variations in the mass and structural properties of the adsorbed layer. Aqueous ZnSO4 demonstrated the accumulation of porous Zn4SO4(OH)6·xH2O at negative potentials, leading to a mass of 1.47 μg cm–2 after five cycles. Bisulfate formation was observed at positive potentials. SEIRAS measurements for ZnOTF demonstrated reorientation and surface adsorption of CF3SO3 – to favor CF3 at the surface for positive potentials, and acetonitrile showed increased stability for the electrode at negative potentials. The additive was also reported to lead to the accumulation of a substantial passivation layer with viscoelastic properties. The zinc water-in-salt showed exceptional surface stability at negative potentials and a widened potential window. A thin rigid zinc SEI layer is reported with a mass of 0.7 μg cm–2. The compositional intricacies of these surface structures are discussed in relation to their solvent conditions. This investigation not only sheds light on the initial charge/discharge cycles in ZIBs but also underscores their pivotal role in instigating enduring transformations that can significantly influence their long-term cycling performance. |
---|---|
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.4c15318 |