Clinical Explorations of 68Ga Ga-FAPI-04 and 18F FDG Dual-Tracer Total-body PET/CT and PET/MR Imaging

Fibroblast activation protein inhibitor (FAPI) and [18F]fluorodeoxyglucose ([18F]FDG) provide complementary biological information, and FAPI/FDG dual-tracer imaging clinical application is increasing recently. However, optimal protocols for FAPI/FDG dual-tracer positron emission tomography/computed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Seminars in nuclear medicine 2024-11, Vol.54 (6), p.904
Hauptverfasser: Lin, Yu, Gao, Huaping, Zheng, Jiefu, Al-Ibraheem, Akram, Hu, Pengcheng, Shi, Hongcheng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fibroblast activation protein inhibitor (FAPI) and [18F]fluorodeoxyglucose ([18F]FDG) provide complementary biological information, and FAPI/FDG dual-tracer imaging clinical application is increasing recently. However, optimal protocols for FAPI/FDG dual-tracer positron emission tomography/computed tomography (PET/CT) and PET/magnetic resonance (PET/MR) imaging are still under investigation. Due to its high sensitivity, total-body PET/CT allows for imaging with minimal tracer activity and supports the creation of new dual-tracer PET/CT imaging protocols. PET/MR, with its multiparametric MR imaging, provides additional biological information for diagnosis. Studies have investigated the clinical feasibility of low-activity PET/MR imaging, yielding promising results. As there are still few institutions in the world that have experience with the advances provided by the use of total-body PET/CT and equipped with a PET/MR scanner, we have discussed the clinical explorations to reduce radiation exposure and optimize workflows for [68Ga]Ga-FAPI-04 and [18F]FDG dual-tracer PET/CT and PET/MR imaging. The review also provides potential new clinical explorations of [68Ga]Ga-FAPI-04 and [18F]FDG dual-tracer total-body PET/CT and PET/MR imaging, including dual-tracer dual-low-activity imaging.Fibroblast activation protein inhibitor (FAPI) and [18F]fluorodeoxyglucose ([18F]FDG) provide complementary biological information, and FAPI/FDG dual-tracer imaging clinical application is increasing recently. However, optimal protocols for FAPI/FDG dual-tracer positron emission tomography/computed tomography (PET/CT) and PET/magnetic resonance (PET/MR) imaging are still under investigation. Due to its high sensitivity, total-body PET/CT allows for imaging with minimal tracer activity and supports the creation of new dual-tracer PET/CT imaging protocols. PET/MR, with its multiparametric MR imaging, provides additional biological information for diagnosis. Studies have investigated the clinical feasibility of low-activity PET/MR imaging, yielding promising results. As there are still few institutions in the world that have experience with the advances provided by the use of total-body PET/CT and equipped with a PET/MR scanner, we have discussed the clinical explorations to reduce radiation exposure and optimize workflows for [68Ga]Ga-FAPI-04 and [18F]FDG dual-tracer PET/CT and PET/MR imaging. The review also provides potential new clinical explorations of [68Ga]Ga-FAPI-04 and [18F]
ISSN:1558-4623
1558-4623
DOI:10.1053/j.semnuclmed.2024.09.009