A dual-mode strategy for early detection of sugarcane pokkah boeng disease pathogen: A portable sensing device based on Cross-N DNA framework and MoS2@GDY

Sucrose, a common sugar primarily derived from sugarcane, is a crucial national strategic resource. However, its yield is significantly affected by various serious diseases, with pokkah boeng disease being one of the most damaging. Therefore, developing a sensitive method for the accurate detection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2025-01, Vol.267, p.116874, Article 116874
Hauptverfasser: Song, Yujie, Wang, Zeping, Wu, Qingnian, Su, Jing, Liao, Jie, Zhang, Xiaoqiu, Yan, Jun, Huang, Ke-Jing, Tan, Xuecai, Ya, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sucrose, a common sugar primarily derived from sugarcane, is a crucial national strategic resource. However, its yield is significantly affected by various serious diseases, with pokkah boeng disease being one of the most damaging. Therefore, developing a sensitive method for the accurate detection of the pokkah boeng disease pathogen is crucial for ensuring the safety of sugar. This work presents a portable dual-modal detection device, assisted by a smartphone, which is based on MoS2@GDY, Mn3O4@Au nanomenzyme, cross-N DNA framework and Exo III exonuclease-assisted CHA signal amplification technology. The cross-N DNA framework provides many binding sites and is not restricted by AuNPs scattering positions, enhancing the signal output strength of the sensor. Additionally, the detection system incorporates a high-power-density capacitor to further amplify the electrochemical detection signal, increasing sensitivity by 9.1 times. Moreover, the use of electrochemical and colorimetric dual-mode detection effectively avoids mutual interference, reducing the likelihood of false positives from a single signal. Under optimized conditions, the proposed method has a linear range of 0.0001–10,000 pM, and with a detection limit of 6.1 aM (S/N=3). This high-sensitivity, high-reliability portable sensing method shows significant potential for the early detection and real-time on-site monitoring of the pokkah boeng disease pathogen.
ISSN:0956-5663
1873-4235
1873-4235
DOI:10.1016/j.bios.2024.116874