Advances in the biosynthesis of D-allulose

D-allulose is a rare monosaccharide and a C-3 epimer of D-fructose. It has physiological functions, such as antihyperglycemic, obesity-preventing, neuroprotective, and reactive oxygen species (ROS) scavenging effects, making it an ideal sugar substitute. The synthesis methods for D-allulose include...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of microbiology & biotechnology 2024-12, Vol.40 (12), p.375-375, Article 375
Hauptverfasser: Zhang, Yue, Zhou, Zhengsong, Luan, Haoni, Zhang, Xue, Liu, Mengyu, Wang, Kuiming, Wang, Fei, Feng, Wei, Xu, Wei, Song, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:D-allulose is a rare monosaccharide and a C-3 epimer of D-fructose. It has physiological functions, such as antihyperglycemic, obesity-preventing, neuroprotective, and reactive oxygen species (ROS) scavenging effects, making it an ideal sugar substitute. The synthesis methods for D-allulose include chemical synthesis and biosynthesis. Chemical synthesis requires strict reaction conditions and tends to produce byproducts. Biosynthesis is mainly an enzymatic process. Enzymatic catalysis for the conversion of starch or glycerol to D-allulose is performed mainly by enzymes such as isoamylase (IA), glucose isomerase (GI), D-allulose 3-epimerase (DPE), D -allulose-6-phosphate 3-epimerase (A6PE), D -allulose 6-phosphate phosphatase (A6PP), ribitol 2-dehydrogenase (RDH), glycerophosphate kinase (GK), glycerophosphate oxidase (GPO), and dihydroxyacetone phosphate (DHAP)-dependent aldolase. Biosynthesis is a more energy-efficient process, producing fewer harmful by-products and pollutants, and significantly reducing negative environmental impacts. Furthermore, the specific catalytic activity of enzymes facilitates the production of compounds of higher purity, thereby facilitating the isolation and purification of the products. It has thus become the main method for producing d -allulose. This article reviews the progress in research on the biosynthetic production of d -allulose, focusing on the enzymes involved and their enzymatic properties, and discusses the production prospects for D-allulose.
ISSN:0959-3993
1573-0972
1573-0972
DOI:10.1007/s11274-024-04166-w