Catalytic membrane with dual-layer structure for ultrafast degradation of emerging contaminants in surface water treatment

The catalytic membrane-based oxidation-filtration process integrates physical separation and chemical oxidation, offering a highly efficient water purification strategy. However, the oxidation-filtration process is limited in practical applications due to the short residence time of milliseconds wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2024-12, Vol.480, p.136333, Article 136333
Hauptverfasser: Gao, Qieyuan, Jin, Xinyao, Zhang, Xi, Li, Junwei, Liu, Peng, Li, Peijie, Luo, Xinsheng, Gong, Weijia, Xu, Daliang, Dewil, Raf, Liang, Heng, Van der Bruggen, Bart
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 136333
container_title Journal of hazardous materials
container_volume 480
creator Gao, Qieyuan
Jin, Xinyao
Zhang, Xi
Li, Junwei
Liu, Peng
Li, Peijie
Luo, Xinsheng
Gong, Weijia
Xu, Daliang
Dewil, Raf
Liang, Heng
Van der Bruggen, Bart
description The catalytic membrane-based oxidation-filtration process integrates physical separation and chemical oxidation, offering a highly efficient water purification strategy. However, the oxidation-filtration process is limited in practical applications due to the short residence time of milliseconds within the catalytic layer and the interference of coexisting organic pollutants in real water. Herein, a dual-layer membrane containing a top selective layer and a bottom catalytic layer was fabricated using an in situ co-casting method with a double-blade knife. Experimental results demonstrated that the selective layer rejected macromolecular organic pollutants, thereby alleviating their interference with bisphenol A (BPA) degradation. Concurrently, the catalytic layer activated peracetic acid oxidant and achieved a high BPA degradation exceeding 90 % in milliseconds with reactive oxygen species (especially •OH). The finite-element analysis confirmed a high-concentration reaction field occupying the pore cavity of the catalytic layer, enhancing collision probability between reactive oxygen species and BPA, i.e., the nano-confinement effect. Additionally, the dual-layer membrane achieved a long-term stable performance for emerging contaminant degradation in surface water treatment. This work underscores a novel catalytic membrane structure design for high-performance oxidation-filtration processes and elucidates its mechanisms underlying ultrafast degradation. [Display omitted] •The MnO2-PVDF membrane was synthesized in situ by a co-casting method.•The MnO2-PVDF/PAA system could intercept large molecular pollutants and oxidize small molecular pollutants.•The toxicity of the intermediate degradation products of pollutants was reduced after degradation.•The MnO2-PVDF/PAA system had ultrafast degradation of emerging contaminants in surface water.
doi_str_mv 10.1016/j.jhazmat.2024.136333
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3123549443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389424029121</els_id><sourcerecordid>3154247127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-a0e8d4b1a00c9ff0f6695aeb2196aa6a9243170d6143f86134024d10a5730c023</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhi0EoqHwE0A-ctngr_XunhCKyodUiQucrYk9Th2tvcX2gtJfj6sErnCaOTzzjmYeQl5ztuWM63fH7fEOHiLUrWBCbbnUUsonZMPHQXat1U_JhkmmOjlO6oq8KOXIGONDr56TKzmpUUsxbMjDDirMpxosjRj3GRLSX6HeUbfC3M1wwkxLzauta0bql0zXuWbwUCp1eMjgoIYl0cVTjJgPIR2oXVKFGBKkWmhItKzZg225UFtazQg1YqovyTMPc8FXl3pNvn-8-bb73N1-_fRl9-G2s2LQtQOGo1N7DozZyXvmtZ56wL3gkwbQMAkl-cCc5kr6UXOp2j8cZ9APklkm5DV5e869z8uPFUs1MRSL89xuXdZiJO-VUAMXw3-gQvZqUko2tD-jNi-lZPTmPocI-WQ4M4-GzNFcDJlHQ-ZsqM29uaxY9xHd36k_Shrw_gxg-8nPgNkUGzBZdCGjrcYt4R8rfgOVnqYX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123549443</pqid></control><display><type>article</type><title>Catalytic membrane with dual-layer structure for ultrafast degradation of emerging contaminants in surface water treatment</title><source>Elsevier ScienceDirect Journals</source><creator>Gao, Qieyuan ; Jin, Xinyao ; Zhang, Xi ; Li, Junwei ; Liu, Peng ; Li, Peijie ; Luo, Xinsheng ; Gong, Weijia ; Xu, Daliang ; Dewil, Raf ; Liang, Heng ; Van der Bruggen, Bart</creator><creatorcontrib>Gao, Qieyuan ; Jin, Xinyao ; Zhang, Xi ; Li, Junwei ; Liu, Peng ; Li, Peijie ; Luo, Xinsheng ; Gong, Weijia ; Xu, Daliang ; Dewil, Raf ; Liang, Heng ; Van der Bruggen, Bart</creatorcontrib><description>The catalytic membrane-based oxidation-filtration process integrates physical separation and chemical oxidation, offering a highly efficient water purification strategy. However, the oxidation-filtration process is limited in practical applications due to the short residence time of milliseconds within the catalytic layer and the interference of coexisting organic pollutants in real water. Herein, a dual-layer membrane containing a top selective layer and a bottom catalytic layer was fabricated using an in situ co-casting method with a double-blade knife. Experimental results demonstrated that the selective layer rejected macromolecular organic pollutants, thereby alleviating their interference with bisphenol A (BPA) degradation. Concurrently, the catalytic layer activated peracetic acid oxidant and achieved a high BPA degradation exceeding 90 % in milliseconds with reactive oxygen species (especially •OH). The finite-element analysis confirmed a high-concentration reaction field occupying the pore cavity of the catalytic layer, enhancing collision probability between reactive oxygen species and BPA, i.e., the nano-confinement effect. Additionally, the dual-layer membrane achieved a long-term stable performance for emerging contaminant degradation in surface water treatment. This work underscores a novel catalytic membrane structure design for high-performance oxidation-filtration processes and elucidates its mechanisms underlying ultrafast degradation. [Display omitted] •The MnO2-PVDF membrane was synthesized in situ by a co-casting method.•The MnO2-PVDF/PAA system could intercept large molecular pollutants and oxidize small molecular pollutants.•The toxicity of the intermediate degradation products of pollutants was reduced after degradation.•The MnO2-PVDF/PAA system had ultrafast degradation of emerging contaminants in surface water.</description><identifier>ISSN: 0304-3894</identifier><identifier>ISSN: 1873-3336</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2024.136333</identifier><identifier>PMID: 39486327</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>bisphenol A ; Catalytic oxidation ; Co-casting ; Dual-layer membrane ; finite element analysis ; Nano-confinement effect ; oxidants ; oxidation ; Peracetic acid ; probability ; reactive oxygen species ; surface water ; water purification</subject><ispartof>Journal of hazardous materials, 2024-12, Vol.480, p.136333, Article 136333</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c276t-a0e8d4b1a00c9ff0f6695aeb2196aa6a9243170d6143f86134024d10a5730c023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304389424029121$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39486327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Qieyuan</creatorcontrib><creatorcontrib>Jin, Xinyao</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><creatorcontrib>Li, Junwei</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Li, Peijie</creatorcontrib><creatorcontrib>Luo, Xinsheng</creatorcontrib><creatorcontrib>Gong, Weijia</creatorcontrib><creatorcontrib>Xu, Daliang</creatorcontrib><creatorcontrib>Dewil, Raf</creatorcontrib><creatorcontrib>Liang, Heng</creatorcontrib><creatorcontrib>Van der Bruggen, Bart</creatorcontrib><title>Catalytic membrane with dual-layer structure for ultrafast degradation of emerging contaminants in surface water treatment</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>The catalytic membrane-based oxidation-filtration process integrates physical separation and chemical oxidation, offering a highly efficient water purification strategy. However, the oxidation-filtration process is limited in practical applications due to the short residence time of milliseconds within the catalytic layer and the interference of coexisting organic pollutants in real water. Herein, a dual-layer membrane containing a top selective layer and a bottom catalytic layer was fabricated using an in situ co-casting method with a double-blade knife. Experimental results demonstrated that the selective layer rejected macromolecular organic pollutants, thereby alleviating their interference with bisphenol A (BPA) degradation. Concurrently, the catalytic layer activated peracetic acid oxidant and achieved a high BPA degradation exceeding 90 % in milliseconds with reactive oxygen species (especially •OH). The finite-element analysis confirmed a high-concentration reaction field occupying the pore cavity of the catalytic layer, enhancing collision probability between reactive oxygen species and BPA, i.e., the nano-confinement effect. Additionally, the dual-layer membrane achieved a long-term stable performance for emerging contaminant degradation in surface water treatment. This work underscores a novel catalytic membrane structure design for high-performance oxidation-filtration processes and elucidates its mechanisms underlying ultrafast degradation. [Display omitted] •The MnO2-PVDF membrane was synthesized in situ by a co-casting method.•The MnO2-PVDF/PAA system could intercept large molecular pollutants and oxidize small molecular pollutants.•The toxicity of the intermediate degradation products of pollutants was reduced after degradation.•The MnO2-PVDF/PAA system had ultrafast degradation of emerging contaminants in surface water.</description><subject>bisphenol A</subject><subject>Catalytic oxidation</subject><subject>Co-casting</subject><subject>Dual-layer membrane</subject><subject>finite element analysis</subject><subject>Nano-confinement effect</subject><subject>oxidants</subject><subject>oxidation</subject><subject>Peracetic acid</subject><subject>probability</subject><subject>reactive oxygen species</subject><subject>surface water</subject><subject>water purification</subject><issn>0304-3894</issn><issn>1873-3336</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkU1vEzEQhi0EoqHwE0A-ctngr_XunhCKyodUiQucrYk9Th2tvcX2gtJfj6sErnCaOTzzjmYeQl5ztuWM63fH7fEOHiLUrWBCbbnUUsonZMPHQXat1U_JhkmmOjlO6oq8KOXIGONDr56TKzmpUUsxbMjDDirMpxosjRj3GRLSX6HeUbfC3M1wwkxLzauta0bql0zXuWbwUCp1eMjgoIYl0cVTjJgPIR2oXVKFGBKkWmhItKzZg225UFtazQg1YqovyTMPc8FXl3pNvn-8-bb73N1-_fRl9-G2s2LQtQOGo1N7DozZyXvmtZ56wL3gkwbQMAkl-cCc5kr6UXOp2j8cZ9APklkm5DV5e869z8uPFUs1MRSL89xuXdZiJO-VUAMXw3-gQvZqUko2tD-jNi-lZPTmPocI-WQ4M4-GzNFcDJlHQ-ZsqM29uaxY9xHd36k_Shrw_gxg-8nPgNkUGzBZdCGjrcYt4R8rfgOVnqYX</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Gao, Qieyuan</creator><creator>Jin, Xinyao</creator><creator>Zhang, Xi</creator><creator>Li, Junwei</creator><creator>Liu, Peng</creator><creator>Li, Peijie</creator><creator>Luo, Xinsheng</creator><creator>Gong, Weijia</creator><creator>Xu, Daliang</creator><creator>Dewil, Raf</creator><creator>Liang, Heng</creator><creator>Van der Bruggen, Bart</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20241205</creationdate><title>Catalytic membrane with dual-layer structure for ultrafast degradation of emerging contaminants in surface water treatment</title><author>Gao, Qieyuan ; Jin, Xinyao ; Zhang, Xi ; Li, Junwei ; Liu, Peng ; Li, Peijie ; Luo, Xinsheng ; Gong, Weijia ; Xu, Daliang ; Dewil, Raf ; Liang, Heng ; Van der Bruggen, Bart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-a0e8d4b1a00c9ff0f6695aeb2196aa6a9243170d6143f86134024d10a5730c023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bisphenol A</topic><topic>Catalytic oxidation</topic><topic>Co-casting</topic><topic>Dual-layer membrane</topic><topic>finite element analysis</topic><topic>Nano-confinement effect</topic><topic>oxidants</topic><topic>oxidation</topic><topic>Peracetic acid</topic><topic>probability</topic><topic>reactive oxygen species</topic><topic>surface water</topic><topic>water purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Qieyuan</creatorcontrib><creatorcontrib>Jin, Xinyao</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><creatorcontrib>Li, Junwei</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Li, Peijie</creatorcontrib><creatorcontrib>Luo, Xinsheng</creatorcontrib><creatorcontrib>Gong, Weijia</creatorcontrib><creatorcontrib>Xu, Daliang</creatorcontrib><creatorcontrib>Dewil, Raf</creatorcontrib><creatorcontrib>Liang, Heng</creatorcontrib><creatorcontrib>Van der Bruggen, Bart</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Qieyuan</au><au>Jin, Xinyao</au><au>Zhang, Xi</au><au>Li, Junwei</au><au>Liu, Peng</au><au>Li, Peijie</au><au>Luo, Xinsheng</au><au>Gong, Weijia</au><au>Xu, Daliang</au><au>Dewil, Raf</au><au>Liang, Heng</au><au>Van der Bruggen, Bart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic membrane with dual-layer structure for ultrafast degradation of emerging contaminants in surface water treatment</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2024-12-05</date><risdate>2024</risdate><volume>480</volume><spage>136333</spage><pages>136333-</pages><artnum>136333</artnum><issn>0304-3894</issn><issn>1873-3336</issn><eissn>1873-3336</eissn><abstract>The catalytic membrane-based oxidation-filtration process integrates physical separation and chemical oxidation, offering a highly efficient water purification strategy. However, the oxidation-filtration process is limited in practical applications due to the short residence time of milliseconds within the catalytic layer and the interference of coexisting organic pollutants in real water. Herein, a dual-layer membrane containing a top selective layer and a bottom catalytic layer was fabricated using an in situ co-casting method with a double-blade knife. Experimental results demonstrated that the selective layer rejected macromolecular organic pollutants, thereby alleviating their interference with bisphenol A (BPA) degradation. Concurrently, the catalytic layer activated peracetic acid oxidant and achieved a high BPA degradation exceeding 90 % in milliseconds with reactive oxygen species (especially •OH). The finite-element analysis confirmed a high-concentration reaction field occupying the pore cavity of the catalytic layer, enhancing collision probability between reactive oxygen species and BPA, i.e., the nano-confinement effect. Additionally, the dual-layer membrane achieved a long-term stable performance for emerging contaminant degradation in surface water treatment. This work underscores a novel catalytic membrane structure design for high-performance oxidation-filtration processes and elucidates its mechanisms underlying ultrafast degradation. [Display omitted] •The MnO2-PVDF membrane was synthesized in situ by a co-casting method.•The MnO2-PVDF/PAA system could intercept large molecular pollutants and oxidize small molecular pollutants.•The toxicity of the intermediate degradation products of pollutants was reduced after degradation.•The MnO2-PVDF/PAA system had ultrafast degradation of emerging contaminants in surface water.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39486327</pmid><doi>10.1016/j.jhazmat.2024.136333</doi></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2024-12, Vol.480, p.136333, Article 136333
issn 0304-3894
1873-3336
1873-3336
language eng
recordid cdi_proquest_miscellaneous_3123549443
source Elsevier ScienceDirect Journals
subjects bisphenol A
Catalytic oxidation
Co-casting
Dual-layer membrane
finite element analysis
Nano-confinement effect
oxidants
oxidation
Peracetic acid
probability
reactive oxygen species
surface water
water purification
title Catalytic membrane with dual-layer structure for ultrafast degradation of emerging contaminants in surface water treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20membrane%20with%20dual-layer%20structure%20for%20ultrafast%20degradation%20of%20emerging%20contaminants%20in%20surface%20water%20treatment&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Gao,%20Qieyuan&rft.date=2024-12-05&rft.volume=480&rft.spage=136333&rft.pages=136333-&rft.artnum=136333&rft.issn=0304-3894&rft.eissn=1873-3336&rft_id=info:doi/10.1016/j.jhazmat.2024.136333&rft_dat=%3Cproquest_cross%3E3154247127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123549443&rft_id=info:pmid/39486327&rft_els_id=S0304389424029121&rfr_iscdi=true