Catalytic membrane with dual-layer structure for ultrafast degradation of emerging contaminants in surface water treatment
The catalytic membrane-based oxidation-filtration process integrates physical separation and chemical oxidation, offering a highly efficient water purification strategy. However, the oxidation-filtration process is limited in practical applications due to the short residence time of milliseconds wit...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2024-12, Vol.480, p.136333, Article 136333 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 136333 |
container_title | Journal of hazardous materials |
container_volume | 480 |
creator | Gao, Qieyuan Jin, Xinyao Zhang, Xi Li, Junwei Liu, Peng Li, Peijie Luo, Xinsheng Gong, Weijia Xu, Daliang Dewil, Raf Liang, Heng Van der Bruggen, Bart |
description | The catalytic membrane-based oxidation-filtration process integrates physical separation and chemical oxidation, offering a highly efficient water purification strategy. However, the oxidation-filtration process is limited in practical applications due to the short residence time of milliseconds within the catalytic layer and the interference of coexisting organic pollutants in real water. Herein, a dual-layer membrane containing a top selective layer and a bottom catalytic layer was fabricated using an in situ co-casting method with a double-blade knife. Experimental results demonstrated that the selective layer rejected macromolecular organic pollutants, thereby alleviating their interference with bisphenol A (BPA) degradation. Concurrently, the catalytic layer activated peracetic acid oxidant and achieved a high BPA degradation exceeding 90 % in milliseconds with reactive oxygen species (especially •OH). The finite-element analysis confirmed a high-concentration reaction field occupying the pore cavity of the catalytic layer, enhancing collision probability between reactive oxygen species and BPA, i.e., the nano-confinement effect. Additionally, the dual-layer membrane achieved a long-term stable performance for emerging contaminant degradation in surface water treatment. This work underscores a novel catalytic membrane structure design for high-performance oxidation-filtration processes and elucidates its mechanisms underlying ultrafast degradation.
[Display omitted]
•The MnO2-PVDF membrane was synthesized in situ by a co-casting method.•The MnO2-PVDF/PAA system could intercept large molecular pollutants and oxidize small molecular pollutants.•The toxicity of the intermediate degradation products of pollutants was reduced after degradation.•The MnO2-PVDF/PAA system had ultrafast degradation of emerging contaminants in surface water. |
doi_str_mv | 10.1016/j.jhazmat.2024.136333 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3123549443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389424029121</els_id><sourcerecordid>3154247127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-a0e8d4b1a00c9ff0f6695aeb2196aa6a9243170d6143f86134024d10a5730c023</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhi0EoqHwE0A-ctngr_XunhCKyodUiQucrYk9Th2tvcX2gtJfj6sErnCaOTzzjmYeQl5ztuWM63fH7fEOHiLUrWBCbbnUUsonZMPHQXat1U_JhkmmOjlO6oq8KOXIGONDr56TKzmpUUsxbMjDDirMpxosjRj3GRLSX6HeUbfC3M1wwkxLzauta0bql0zXuWbwUCp1eMjgoIYl0cVTjJgPIR2oXVKFGBKkWmhItKzZg225UFtazQg1YqovyTMPc8FXl3pNvn-8-bb73N1-_fRl9-G2s2LQtQOGo1N7DozZyXvmtZ56wL3gkwbQMAkl-cCc5kr6UXOp2j8cZ9APklkm5DV5e869z8uPFUs1MRSL89xuXdZiJO-VUAMXw3-gQvZqUko2tD-jNi-lZPTmPocI-WQ4M4-GzNFcDJlHQ-ZsqM29uaxY9xHd36k_Shrw_gxg-8nPgNkUGzBZdCGjrcYt4R8rfgOVnqYX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123549443</pqid></control><display><type>article</type><title>Catalytic membrane with dual-layer structure for ultrafast degradation of emerging contaminants in surface water treatment</title><source>Elsevier ScienceDirect Journals</source><creator>Gao, Qieyuan ; Jin, Xinyao ; Zhang, Xi ; Li, Junwei ; Liu, Peng ; Li, Peijie ; Luo, Xinsheng ; Gong, Weijia ; Xu, Daliang ; Dewil, Raf ; Liang, Heng ; Van der Bruggen, Bart</creator><creatorcontrib>Gao, Qieyuan ; Jin, Xinyao ; Zhang, Xi ; Li, Junwei ; Liu, Peng ; Li, Peijie ; Luo, Xinsheng ; Gong, Weijia ; Xu, Daliang ; Dewil, Raf ; Liang, Heng ; Van der Bruggen, Bart</creatorcontrib><description>The catalytic membrane-based oxidation-filtration process integrates physical separation and chemical oxidation, offering a highly efficient water purification strategy. However, the oxidation-filtration process is limited in practical applications due to the short residence time of milliseconds within the catalytic layer and the interference of coexisting organic pollutants in real water. Herein, a dual-layer membrane containing a top selective layer and a bottom catalytic layer was fabricated using an in situ co-casting method with a double-blade knife. Experimental results demonstrated that the selective layer rejected macromolecular organic pollutants, thereby alleviating their interference with bisphenol A (BPA) degradation. Concurrently, the catalytic layer activated peracetic acid oxidant and achieved a high BPA degradation exceeding 90 % in milliseconds with reactive oxygen species (especially •OH). The finite-element analysis confirmed a high-concentration reaction field occupying the pore cavity of the catalytic layer, enhancing collision probability between reactive oxygen species and BPA, i.e., the nano-confinement effect. Additionally, the dual-layer membrane achieved a long-term stable performance for emerging contaminant degradation in surface water treatment. This work underscores a novel catalytic membrane structure design for high-performance oxidation-filtration processes and elucidates its mechanisms underlying ultrafast degradation.
[Display omitted]
•The MnO2-PVDF membrane was synthesized in situ by a co-casting method.•The MnO2-PVDF/PAA system could intercept large molecular pollutants and oxidize small molecular pollutants.•The toxicity of the intermediate degradation products of pollutants was reduced after degradation.•The MnO2-PVDF/PAA system had ultrafast degradation of emerging contaminants in surface water.</description><identifier>ISSN: 0304-3894</identifier><identifier>ISSN: 1873-3336</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2024.136333</identifier><identifier>PMID: 39486327</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>bisphenol A ; Catalytic oxidation ; Co-casting ; Dual-layer membrane ; finite element analysis ; Nano-confinement effect ; oxidants ; oxidation ; Peracetic acid ; probability ; reactive oxygen species ; surface water ; water purification</subject><ispartof>Journal of hazardous materials, 2024-12, Vol.480, p.136333, Article 136333</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c276t-a0e8d4b1a00c9ff0f6695aeb2196aa6a9243170d6143f86134024d10a5730c023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304389424029121$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39486327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Qieyuan</creatorcontrib><creatorcontrib>Jin, Xinyao</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><creatorcontrib>Li, Junwei</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Li, Peijie</creatorcontrib><creatorcontrib>Luo, Xinsheng</creatorcontrib><creatorcontrib>Gong, Weijia</creatorcontrib><creatorcontrib>Xu, Daliang</creatorcontrib><creatorcontrib>Dewil, Raf</creatorcontrib><creatorcontrib>Liang, Heng</creatorcontrib><creatorcontrib>Van der Bruggen, Bart</creatorcontrib><title>Catalytic membrane with dual-layer structure for ultrafast degradation of emerging contaminants in surface water treatment</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>The catalytic membrane-based oxidation-filtration process integrates physical separation and chemical oxidation, offering a highly efficient water purification strategy. However, the oxidation-filtration process is limited in practical applications due to the short residence time of milliseconds within the catalytic layer and the interference of coexisting organic pollutants in real water. Herein, a dual-layer membrane containing a top selective layer and a bottom catalytic layer was fabricated using an in situ co-casting method with a double-blade knife. Experimental results demonstrated that the selective layer rejected macromolecular organic pollutants, thereby alleviating their interference with bisphenol A (BPA) degradation. Concurrently, the catalytic layer activated peracetic acid oxidant and achieved a high BPA degradation exceeding 90 % in milliseconds with reactive oxygen species (especially •OH). The finite-element analysis confirmed a high-concentration reaction field occupying the pore cavity of the catalytic layer, enhancing collision probability between reactive oxygen species and BPA, i.e., the nano-confinement effect. Additionally, the dual-layer membrane achieved a long-term stable performance for emerging contaminant degradation in surface water treatment. This work underscores a novel catalytic membrane structure design for high-performance oxidation-filtration processes and elucidates its mechanisms underlying ultrafast degradation.
[Display omitted]
•The MnO2-PVDF membrane was synthesized in situ by a co-casting method.•The MnO2-PVDF/PAA system could intercept large molecular pollutants and oxidize small molecular pollutants.•The toxicity of the intermediate degradation products of pollutants was reduced after degradation.•The MnO2-PVDF/PAA system had ultrafast degradation of emerging contaminants in surface water.</description><subject>bisphenol A</subject><subject>Catalytic oxidation</subject><subject>Co-casting</subject><subject>Dual-layer membrane</subject><subject>finite element analysis</subject><subject>Nano-confinement effect</subject><subject>oxidants</subject><subject>oxidation</subject><subject>Peracetic acid</subject><subject>probability</subject><subject>reactive oxygen species</subject><subject>surface water</subject><subject>water purification</subject><issn>0304-3894</issn><issn>1873-3336</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkU1vEzEQhi0EoqHwE0A-ctngr_XunhCKyodUiQucrYk9Th2tvcX2gtJfj6sErnCaOTzzjmYeQl5ztuWM63fH7fEOHiLUrWBCbbnUUsonZMPHQXat1U_JhkmmOjlO6oq8KOXIGONDr56TKzmpUUsxbMjDDirMpxosjRj3GRLSX6HeUbfC3M1wwkxLzauta0bql0zXuWbwUCp1eMjgoIYl0cVTjJgPIR2oXVKFGBKkWmhItKzZg225UFtazQg1YqovyTMPc8FXl3pNvn-8-bb73N1-_fRl9-G2s2LQtQOGo1N7DozZyXvmtZ56wL3gkwbQMAkl-cCc5kr6UXOp2j8cZ9APklkm5DV5e869z8uPFUs1MRSL89xuXdZiJO-VUAMXw3-gQvZqUko2tD-jNi-lZPTmPocI-WQ4M4-GzNFcDJlHQ-ZsqM29uaxY9xHd36k_Shrw_gxg-8nPgNkUGzBZdCGjrcYt4R8rfgOVnqYX</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Gao, Qieyuan</creator><creator>Jin, Xinyao</creator><creator>Zhang, Xi</creator><creator>Li, Junwei</creator><creator>Liu, Peng</creator><creator>Li, Peijie</creator><creator>Luo, Xinsheng</creator><creator>Gong, Weijia</creator><creator>Xu, Daliang</creator><creator>Dewil, Raf</creator><creator>Liang, Heng</creator><creator>Van der Bruggen, Bart</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20241205</creationdate><title>Catalytic membrane with dual-layer structure for ultrafast degradation of emerging contaminants in surface water treatment</title><author>Gao, Qieyuan ; Jin, Xinyao ; Zhang, Xi ; Li, Junwei ; Liu, Peng ; Li, Peijie ; Luo, Xinsheng ; Gong, Weijia ; Xu, Daliang ; Dewil, Raf ; Liang, Heng ; Van der Bruggen, Bart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-a0e8d4b1a00c9ff0f6695aeb2196aa6a9243170d6143f86134024d10a5730c023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bisphenol A</topic><topic>Catalytic oxidation</topic><topic>Co-casting</topic><topic>Dual-layer membrane</topic><topic>finite element analysis</topic><topic>Nano-confinement effect</topic><topic>oxidants</topic><topic>oxidation</topic><topic>Peracetic acid</topic><topic>probability</topic><topic>reactive oxygen species</topic><topic>surface water</topic><topic>water purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Qieyuan</creatorcontrib><creatorcontrib>Jin, Xinyao</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><creatorcontrib>Li, Junwei</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Li, Peijie</creatorcontrib><creatorcontrib>Luo, Xinsheng</creatorcontrib><creatorcontrib>Gong, Weijia</creatorcontrib><creatorcontrib>Xu, Daliang</creatorcontrib><creatorcontrib>Dewil, Raf</creatorcontrib><creatorcontrib>Liang, Heng</creatorcontrib><creatorcontrib>Van der Bruggen, Bart</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Qieyuan</au><au>Jin, Xinyao</au><au>Zhang, Xi</au><au>Li, Junwei</au><au>Liu, Peng</au><au>Li, Peijie</au><au>Luo, Xinsheng</au><au>Gong, Weijia</au><au>Xu, Daliang</au><au>Dewil, Raf</au><au>Liang, Heng</au><au>Van der Bruggen, Bart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic membrane with dual-layer structure for ultrafast degradation of emerging contaminants in surface water treatment</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2024-12-05</date><risdate>2024</risdate><volume>480</volume><spage>136333</spage><pages>136333-</pages><artnum>136333</artnum><issn>0304-3894</issn><issn>1873-3336</issn><eissn>1873-3336</eissn><abstract>The catalytic membrane-based oxidation-filtration process integrates physical separation and chemical oxidation, offering a highly efficient water purification strategy. However, the oxidation-filtration process is limited in practical applications due to the short residence time of milliseconds within the catalytic layer and the interference of coexisting organic pollutants in real water. Herein, a dual-layer membrane containing a top selective layer and a bottom catalytic layer was fabricated using an in situ co-casting method with a double-blade knife. Experimental results demonstrated that the selective layer rejected macromolecular organic pollutants, thereby alleviating their interference with bisphenol A (BPA) degradation. Concurrently, the catalytic layer activated peracetic acid oxidant and achieved a high BPA degradation exceeding 90 % in milliseconds with reactive oxygen species (especially •OH). The finite-element analysis confirmed a high-concentration reaction field occupying the pore cavity of the catalytic layer, enhancing collision probability between reactive oxygen species and BPA, i.e., the nano-confinement effect. Additionally, the dual-layer membrane achieved a long-term stable performance for emerging contaminant degradation in surface water treatment. This work underscores a novel catalytic membrane structure design for high-performance oxidation-filtration processes and elucidates its mechanisms underlying ultrafast degradation.
[Display omitted]
•The MnO2-PVDF membrane was synthesized in situ by a co-casting method.•The MnO2-PVDF/PAA system could intercept large molecular pollutants and oxidize small molecular pollutants.•The toxicity of the intermediate degradation products of pollutants was reduced after degradation.•The MnO2-PVDF/PAA system had ultrafast degradation of emerging contaminants in surface water.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39486327</pmid><doi>10.1016/j.jhazmat.2024.136333</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3894 |
ispartof | Journal of hazardous materials, 2024-12, Vol.480, p.136333, Article 136333 |
issn | 0304-3894 1873-3336 1873-3336 |
language | eng |
recordid | cdi_proquest_miscellaneous_3123549443 |
source | Elsevier ScienceDirect Journals |
subjects | bisphenol A Catalytic oxidation Co-casting Dual-layer membrane finite element analysis Nano-confinement effect oxidants oxidation Peracetic acid probability reactive oxygen species surface water water purification |
title | Catalytic membrane with dual-layer structure for ultrafast degradation of emerging contaminants in surface water treatment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20membrane%20with%20dual-layer%20structure%20for%20ultrafast%20degradation%20of%20emerging%20contaminants%20in%20surface%20water%20treatment&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Gao,%20Qieyuan&rft.date=2024-12-05&rft.volume=480&rft.spage=136333&rft.pages=136333-&rft.artnum=136333&rft.issn=0304-3894&rft.eissn=1873-3336&rft_id=info:doi/10.1016/j.jhazmat.2024.136333&rft_dat=%3Cproquest_cross%3E3154247127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123549443&rft_id=info:pmid/39486327&rft_els_id=S0304389424029121&rfr_iscdi=true |