Catalytic membrane with dual-layer structure for ultrafast degradation of emerging contaminants in surface water treatment
The catalytic membrane-based oxidation-filtration process integrates physical separation and chemical oxidation, offering a highly efficient water purification strategy. However, the oxidation-filtration process is limited in practical applications due to the short residence time of milliseconds wit...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2024-12, Vol.480, p.136333, Article 136333 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The catalytic membrane-based oxidation-filtration process integrates physical separation and chemical oxidation, offering a highly efficient water purification strategy. However, the oxidation-filtration process is limited in practical applications due to the short residence time of milliseconds within the catalytic layer and the interference of coexisting organic pollutants in real water. Herein, a dual-layer membrane containing a top selective layer and a bottom catalytic layer was fabricated using an in situ co-casting method with a double-blade knife. Experimental results demonstrated that the selective layer rejected macromolecular organic pollutants, thereby alleviating their interference with bisphenol A (BPA) degradation. Concurrently, the catalytic layer activated peracetic acid oxidant and achieved a high BPA degradation exceeding 90 % in milliseconds with reactive oxygen species (especially •OH). The finite-element analysis confirmed a high-concentration reaction field occupying the pore cavity of the catalytic layer, enhancing collision probability between reactive oxygen species and BPA, i.e., the nano-confinement effect. Additionally, the dual-layer membrane achieved a long-term stable performance for emerging contaminant degradation in surface water treatment. This work underscores a novel catalytic membrane structure design for high-performance oxidation-filtration processes and elucidates its mechanisms underlying ultrafast degradation.
[Display omitted]
•The MnO2-PVDF membrane was synthesized in situ by a co-casting method.•The MnO2-PVDF/PAA system could intercept large molecular pollutants and oxidize small molecular pollutants.•The toxicity of the intermediate degradation products of pollutants was reduced after degradation.•The MnO2-PVDF/PAA system had ultrafast degradation of emerging contaminants in surface water. |
---|---|
ISSN: | 0304-3894 1873-3336 1873-3336 |
DOI: | 10.1016/j.jhazmat.2024.136333 |