Interplay between vanadium distribution and microbial community in soil-plant system
Soil-plant system play an essential role in distribution and transformation of vanadium (V). V shapes the diversity of soil communities, while soil microorganisms mediate V transformation. Plants also absorb V from surrounding soil. However, the study of microbial response to V stress in different s...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2024-12, Vol.480, p.136303, Article 136303 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Soil-plant system play an essential role in distribution and transformation of vanadium (V). V shapes the diversity of soil communities, while soil microorganisms mediate V transformation. Plants also absorb V from surrounding soil. However, the study of microbial response to V stress in different soil-plant compartments is limited, and the metabolic functions driving V transformation across these systems remain elusive. The study investigates the distribution of V in soil-plant systems nearby a V smelter. 16S rRNA sequencing and metagenomics are utilized to reveal the microbial adaptation and V transformation in bulk soil, rhizosphere, and endosphere. Bothriochloa ischaemum (L.) Keng. (BK) exhibits higher phytoextraction potential (TF = 0.74 ± 0.26). Environmental variables, including pH, V, OM, and AP, show significant (p |
---|---|
ISSN: | 0304-3894 1873-3336 1873-3336 |
DOI: | 10.1016/j.jhazmat.2024.136303 |