In vivo placental gene modulation via sonoporation
Placental dysregulation frequently results in pregnancy complications that impact fetal well-being and potentially predispose the infant to diseases later in life. Thus, efforts to understand the molecular mechanisms underlying placental disorders are crucial to aid the development of effective trea...
Gespeichert in:
Veröffentlicht in: | Placenta (Eastbourne) 2024-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Placental dysregulation frequently results in pregnancy complications that impact fetal well-being and potentially predispose the infant to diseases later in life. Thus, efforts to understand the molecular mechanisms underlying placental disorders are crucial to aid the development of effective treatments to restore placental function. Currently, the most common methods used for trophoblast-specific gene modulation in the laboratory are transgenic animals and lentiviral trophectoderm transduction. The generation of transgenic animal lines is costly and requires a considerable amount of time to generate and maintain, while the integration preference of lentiviruses, actively transcribed genes, may result in genotoxicity. Therefore, there is much interest in the development of non-viral in vivo transfection techniques for use in both research and clinical settings. Herein, we describe a non-viral, minimally invasive method for in vivo placental gene modulation through sonoporation, an ultrasound-mediated transfection technique wherein the application of ultrasound on target tissues is used to direct the uptake of DNA vectors. In this method, plasmids are bound to lipid microbubbles, which are then injected into the maternal bloodstream and ultimately delivered to the placenta when subjected to low-frequency ultrasound. Syncytiotrophoblasts are directly exposed to maternal blood and, therefore highly accessible to therapeutic agents in the maternal circulation. This technique can be used to modulate gene expression and, subsequently, the function of the placenta, circumventing the requirement to generate transgenic animals. Sonoporation also offers a safer alternative to existing viral techniques, making it not only an advantageous research tool but also a potentially adaptable technique in clinical settings.
•Sonoporation treats placental but not fetal or maternal tissues, emphasizing safety.•Minimally invasive research tool to deliver genes to placentas of mice.•Ultrasound targeting enhances spatio-temporal control of targeted gene expression.•Cost effective and quicker alternative to commonly used methods.•Detailed protocol for murine placental gene delivery via sonoporation. |
---|---|
ISSN: | 0143-4004 1532-3102 1532-3102 |
DOI: | 10.1016/j.placenta.2024.10.015 |