Nanozyme-based colorimetric and smartphone imaging advanced sensing platforms for tetracycline detection and removal in food
The presence of antibiotic residues poses a significant threat to food assurance, triggering widespread concerns. Therefore, the prompt and accurate detection and removal of antibiotic residues are essential for ensuring food safety. In this study, an aptmer modified triple-metal nanozyme (apt-TMNzy...
Gespeichert in:
Veröffentlicht in: | Talanta (Oxford) 2025-02, Vol.283, p.127028, Article 127028 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The presence of antibiotic residues poses a significant threat to food assurance, triggering widespread concerns. Therefore, the prompt and accurate detection and removal of antibiotic residues are essential for ensuring food safety. In this study, an aptmer modified triple-metal nanozyme (apt-TMNzyme) sensor was developed, which achieved a portable, visual, intelligent, and fast determination for tetracycline (TET). The proposed apt-TMNzyme exhibited willow leaf-like morphology, high specific surface area and excellent TET adsorption and removal properties. The experiments showed that the apt-TMNzyme had outstanding peroxidase activity and could catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) to produce a blue product in the presence of H2O2, which provided a visual response signal to TET. This sensor was capable of quantifying TET within a concentration range of 0.2 nM–70 μM, achieving a detection limit of 7.1 nM under optimal conditions. When tested on real food samples, our sensor produced results that closely paralleled those achieved through high-performance liquid chromatography. To improve accessibility and user-friendliness, we also designed a colorimetric testing paper integrated with a smartphone application for intuitive and intelligent detection of TET, which enables the quantitative determination of TET in the concentration range of 0.003–60 μM, the detection limit was 5.1 μM. This integrated portable sensor not only streamlines the testing process, saving time and costs, but also offers a promising solution for rapid and sensitive detection of antibiotic residues.
[Display omitted]
•An aptmer modified triple-metal nanozyme is prepared for the first time.•An ingenious colorimetric/smartphone imaging advanced TET sensing platform is achieved.•Achieving both the detection and elimination of TET simultaneously. |
---|---|
ISSN: | 0039-9140 1873-3573 1873-3573 |
DOI: | 10.1016/j.talanta.2024.127028 |