Quaternary Ammonium Salt Derivatives of Hyperbranched Polylysine with Enhanced Antibacterial Activity against Multidrug-Resistant Gram-Negative Bacteria
Multidrug-resistant (MDR) Gram-negative bacteria infections have gradually become a more serious health problem recently, and antibacterial drugs are urgently needed to tackle MDR Gram-negative bacteria. Herein, we synthesized a series of quaternary ammonium salt derivatives of hyperbranched polylys...
Gespeichert in:
Veröffentlicht in: | ACS applied bio materials 2024-11, Vol.7 (11), p.7444-7452 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multidrug-resistant (MDR) Gram-negative bacteria infections have gradually become a more serious health problem recently, and antibacterial drugs are urgently needed to tackle MDR Gram-negative bacteria. Herein, we synthesized a series of quaternary ammonium salt derivatives of hyperbranched polylysine (HPL-Cm-n) with different alkyl chain lengths (m = 4, 8, 12, 16) and grafting ratios (n = 5.8–21.0) of alkyl quaternary ammonium salts (Cm). HPL-Cm-ns exhibited excellent antibacterial activities against drug-sensitive E. coli and P. aeruginosa, and specifically, HPL-C12-ns were also highly active against MDR E. coli and P. aeruginosa. The cytotoxicity and hemolytic activity of HPL-Cm-ns increased with the increase in the alkyl chain length and the grafting ratio of Cm. The killing study proved that HPL-C12-9.5 had fast killing kinetics and was bactericidal toward both drug-sensitive and MDR E. coli. The mechanistic studies showed that, similar to hyperbranched polylysine (HPL), HPL-C12-9.5 killed bacteria by disrupting the cell membranes and causing leakage of the cytoplasmic contents. HPL-C12-ns might have potential as an antibacterial agent to combat MDR Gram-negative bacteria. |
---|---|
ISSN: | 2576-6422 2576-6422 |
DOI: | 10.1021/acsabm.4c01056 |