Multianalyte Detection with Metasurface-Based Midinfrared Microspectrometer

Midinfrared (2.5–25 μm) spectroscopy is an ideal tool for identifying chemicals in a nondestructive manner. The traditional platform is a Fourier transform infrared (FTIR) spectrometer, but this is too bulky, expensive, and power-hungry for many applications. There is therefore a growing demand for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sensors 2024-11, Vol.9 (11), p.5839-5847
Hauptverfasser: Tan, Henry, Meng, Jiajun, Crozier, Kenneth B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Midinfrared (2.5–25 μm) spectroscopy is an ideal tool for identifying chemicals in a nondestructive manner. The traditional platform is a Fourier transform infrared (FTIR) spectrometer, but this is too bulky, expensive, and power-hungry for many applications. There is therefore a growing demand for small, lightweight, and cost-effective microspectrometers for use in the field. One emerging platform is the filter-array detector-array microspectrometer. It pairs a broadband detector array with a thin and rigid array of spectral filters to offer a robust, compact platform for real-time in situ sensing. However, most demonstrations have only focused on identifying a single chemical against a null sample, even though many applications would involve multianalyte detection. In this work, we show a rare attempt at simultaneously tracking multiple analytes with a metasurface filter-array microspectrometer. The metasurface consists of periodic lattices of subwavelength circular apertures in an aluminum layer to create an array of bandpass filters. The filter array is imaged with an off-the-shelf microbolometer via a reverse-lens imaging setup to simultaneously monitor the concentration of ethanol and methanol in gasoline. This represents an important application of fuel quality monitoring. Chemometric models (PLS and SVR) are trained and tested on gasoline blends with ethanol and methanol contents, both ranging from 0% to 20% v/v. A support vector machine regression (SVR) model with a cubic kernel was found to have the lowest combined prediction errors. The root-mean-square-error of prediction (RMSEP) for ethanol and methanol are 1.23% and 1.84% v/v; the corresponding pseudounivariate limit of detection is found to be 4.22% and 6.86% v/v, respectively. This work takes the emerging field of metasurface-based mid-infrared spectrometers from single- to multianalyte detection, thereby considerably expanding their range of potential applications.
ISSN:2379-3694
2379-3694
DOI:10.1021/acssensors.4c01220