Microplastic accumulation and transport in agricultural soils with long-term sewage sludge amendments
Land application of sewage sludge brings microplastic contamination to soil. However, studies regarding the occurrence and mobility of sludge-borne microplastics in soil are insufficient. In the present study, based on an experimental field, the effects of sludge application amount on the accumulati...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2024-12, Vol.480, p.136263, Article 136263 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Land application of sewage sludge brings microplastic contamination to soil. However, studies regarding the occurrence and mobility of sludge-borne microplastics in soil are insufficient. In the present study, based on an experimental field, the effects of sludge application amount on the accumulation and migration of microplastics in 0–20 (upper) and 20–40 cm (lower) soil layers were evaluated. After 16 years of continuous sludge application (36 t/ha per year), the microplastic content and migration ratio in upper soil reached 6811 particles/kg and 148 %, which was about 5 and 20 times, respectively, higher than that of the control soil without sludge. The microplastics in upper and lower soil layers, were mainly 0.2–0.5 mm in size, mostly fibrous in shape, primarily transparent in color, and predominantly rayon in composition. Microplastic surfaces may persistently adsorb clay minerals and iron/titanium oxides from soil, posing potential environmental risks. Sludge application had a significant positive correlation with soil microplastic abundance, resulting in a good fit of predictive model constructed for microplastic accumulation in sludge-amended soils. These findings help to improve the knowledge on environmental behavior of microplastics in sludge-amended soil, and can provide a scientific basis for the regulation of microplastic pollution during sludge land application.
[Display omitted]
•Sludge application increases microplastic accumulation and mobility in soil.•Microplastic surfaces adsorb clay minerals and iron/titanium oxides from soil.•Linear regression model demonstrates good prediction of microplastic accumulation. |
---|---|
ISSN: | 0304-3894 1873-3336 1873-3336 |
DOI: | 10.1016/j.jhazmat.2024.136263 |