Type 1 diabetes: immune pathology and novel therapeutic approaches

Type 1 diabetes (T1D) is characterized by the progressive destruction of insulin-producing beta cells in the pancreas. Despite improvements in insulin monitoring techniques, there remains no cure for T1D. Individuals with T1D require lifelong insulin therapy and some develop life-threatening complic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetology international 2024-10, Vol.15 (4), p.761-776
Hauptverfasser: Ling, Eleanor M., Lemos, Joana R. N., Hirani, Khemraj, von Herrath, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Type 1 diabetes (T1D) is characterized by the progressive destruction of insulin-producing beta cells in the pancreas. Despite improvements in insulin monitoring techniques, there remains no cure for T1D. Individuals with T1D require lifelong insulin therapy and some develop life-threatening complications. T1D is a complex, multifactorial, autoimmune condition. Understanding why people get T1D and how it progresses has advanced our knowledge of the disease and led to the discovery of specific targets that can be therapeutically manipulated to halt or reverse the course of T1D. Scientists investigating the potential of immunotherapy treatment for the treatment have recently had some encouraging results. Teplizumab, an anti-CD3 monoclonal antibody that has been approved by the FDA, delays the onset of clinical T1D in patients ≥ 8 years of age with preclinical T1D and improves beta cell function. Therapies targeting beta cell health, vitality, and function are now thought to be an essential component of successful combination therapy for T1D. The idea that the beta cells themselves may influence their own destruction during the development of T1D is a notion that has recently been gaining acceptance in the field. Researchers have recently made remarkable strides in beta cell replacement therapy and beta cell regeneration techniques. This review offers a detailed exploration of the pathophysiological mechanisms of T1D. It discusses the intricate interplay of factors leading to T1D development and the innovative approaches being explored to discover new treatments and a cure for the millions of people living with T1D worldwide.
ISSN:2190-1678
2190-1686
DOI:10.1007/s13340-024-00748-z