Digital Light Process 3D Printing of Magnetically Aligned Liquid Crystalline Elastomer Free–forms

Liquid crystalline elastomers (LCEs) are anisotropic soft materials capable of large dimensional changes when subjected to a stimulus. The magnitude and directionality of the stimuli‐induced thermomechanical response is associated with the alignment of the LCE. Recent reports detail the preparation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-12, Vol.36 (52), p.e2414209-n/a
Hauptverfasser: Herman, Jeremy A., Telles, Rodrigo, Cook, Caitlyn C., Leguizamon, Samuel C., Lewis, Jennifer A., Kaehr, Bryan, White, Timothy J., Roach, Devin J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 52
container_start_page e2414209
container_title Advanced materials (Weinheim)
container_volume 36
creator Herman, Jeremy A.
Telles, Rodrigo
Cook, Caitlyn C.
Leguizamon, Samuel C.
Lewis, Jennifer A.
Kaehr, Bryan
White, Timothy J.
Roach, Devin J.
description Liquid crystalline elastomers (LCEs) are anisotropic soft materials capable of large dimensional changes when subjected to a stimulus. The magnitude and directionality of the stimuli‐induced thermomechanical response is associated with the alignment of the LCE. Recent reports detail the preparation of LCEs by additive manufacturing (AM) techniques, predominately using direct ink write printing. Another AM technique, digital light process (DLP) 3D printing, has generated significant interest as it affords LCE free‐forms with high fidelity and resolution. However, one challenge of printing LCEs using vat polymerization methods such as DLP is enforcing alignment. Here, we document the preparation of aligned, main‐chain LCEs via DLP 3D printing using a 100 mT magnetic field. Systematic examination isolates the contribution of magnetic field strength, alignment time, and build layer thickness on the degree of orientation in 3D printed LCEs. Informed by this fundamental understanding, DLP is used to print complex LCE free‐forms with through‐thickness variation in both spatial orientations. The hierarchical variation in spatial orientation within LCE free‐forms is used to produce objects that exhibit mechanical instabilities upon heating. DLP printing of aligned LCEs opens new opportunities to fabricate stimuli‐responsive materials in form factors optimized for functional use in soft robotics and energy absorption. This study introduces the use of a Halbach array to magnetically align a novel liquid crystalline elastomer (LCE) ink which can be used for vat‐based digital light process (DLP) 3D printing. This approach enables 3D printing of geometrically complex LCE free–forms with tailorable alignment, enabling exciting possibilities for designing advanced biomedical devices, soft robotics, or energy‐damping structures.
doi_str_mv 10.1002/adma.202414209
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3121591854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121591854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2589-acb7db1d335ec3b8e548eae7ffee860e1d0056b53ac6f2e7340c23882e8d2a4f3</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhq2Kqiy01x6RJS69ZBl_Ze3jahdKpUXtoT1HjjNZjJwE7ERob_0P_EN-SY2WgsSF08xIz_to9BLylcGcAfAz23R2zoFLJjmYD2TGFGeFBKMOyAyMUIUppT4kRyndAIApofxEDoWRpTYgZ8St_daPNtCN316P9FccHKZExTqvvh99v6VDS6_stsfROxvCji6Dz1eTE3eTb-gq7lIWBN8jPQ82jUOHkV5ExMe_D-0Qu_SZfGxtSPjleR6TPxfnv1eXxebn9x-r5aZwXGlTWFcvmpo1Qih0otaopEaLi7ZF1CUgawBUWSthXdlyXAgJjgutOeqGW9mKY_Jt772Nw92Eaaw6nxyGYHscplQJxpkyTCuZ0dM36M0wxT5_lylpSsVgwTI131MuDilFbKvb6DsbdxWD6qn-6qn-6qX-HDh51k51h80L_r_vDJg9cO8D7t7RVcv11fJV_g9a_ZJa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149651071</pqid></control><display><type>article</type><title>Digital Light Process 3D Printing of Magnetically Aligned Liquid Crystalline Elastomer Free–forms</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Herman, Jeremy A. ; Telles, Rodrigo ; Cook, Caitlyn C. ; Leguizamon, Samuel C. ; Lewis, Jennifer A. ; Kaehr, Bryan ; White, Timothy J. ; Roach, Devin J.</creator><creatorcontrib>Herman, Jeremy A. ; Telles, Rodrigo ; Cook, Caitlyn C. ; Leguizamon, Samuel C. ; Lewis, Jennifer A. ; Kaehr, Bryan ; White, Timothy J. ; Roach, Devin J.</creatorcontrib><description>Liquid crystalline elastomers (LCEs) are anisotropic soft materials capable of large dimensional changes when subjected to a stimulus. The magnitude and directionality of the stimuli‐induced thermomechanical response is associated with the alignment of the LCE. Recent reports detail the preparation of LCEs by additive manufacturing (AM) techniques, predominately using direct ink write printing. Another AM technique, digital light process (DLP) 3D printing, has generated significant interest as it affords LCE free‐forms with high fidelity and resolution. However, one challenge of printing LCEs using vat polymerization methods such as DLP is enforcing alignment. Here, we document the preparation of aligned, main‐chain LCEs via DLP 3D printing using a 100 mT magnetic field. Systematic examination isolates the contribution of magnetic field strength, alignment time, and build layer thickness on the degree of orientation in 3D printed LCEs. Informed by this fundamental understanding, DLP is used to print complex LCE free‐forms with through‐thickness variation in both spatial orientations. The hierarchical variation in spatial orientation within LCE free‐forms is used to produce objects that exhibit mechanical instabilities upon heating. DLP printing of aligned LCEs opens new opportunities to fabricate stimuli‐responsive materials in form factors optimized for functional use in soft robotics and energy absorption. This study introduces the use of a Halbach array to magnetically align a novel liquid crystalline elastomer (LCE) ink which can be used for vat‐based digital light process (DLP) 3D printing. This approach enables 3D printing of geometrically complex LCE free–forms with tailorable alignment, enabling exciting possibilities for designing advanced biomedical devices, soft robotics, or energy‐damping structures.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202414209</identifier><identifier>PMID: 39468904</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>3-D printers ; 3D printing ; actuation ; Alignment ; Automation ; Dimensional changes ; Elastomers ; Energy absorption ; Field strength ; Form factors ; Industrial robots ; liquid crystalline elastomers ; Liquid crystals ; magnetic alignment ; Magnetic fields ; mechanical instabilities ; Robotics ; Stimuli ; Thickness ; Three dimensional printing</subject><ispartof>Advanced materials (Weinheim), 2024-12, Vol.36 (52), p.e2414209-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2589-acb7db1d335ec3b8e548eae7ffee860e1d0056b53ac6f2e7340c23882e8d2a4f3</cites><orcidid>0000-0002-0280-2774 ; 0000-0002-9227-7060 ; 0000-0001-5785-6289 ; 0009-0004-9444-2754 ; 0000-0003-3395-6562 ; 0000-0002-3290-6988 ; 0000-0002-8825-0340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202414209$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202414209$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39468904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herman, Jeremy A.</creatorcontrib><creatorcontrib>Telles, Rodrigo</creatorcontrib><creatorcontrib>Cook, Caitlyn C.</creatorcontrib><creatorcontrib>Leguizamon, Samuel C.</creatorcontrib><creatorcontrib>Lewis, Jennifer A.</creatorcontrib><creatorcontrib>Kaehr, Bryan</creatorcontrib><creatorcontrib>White, Timothy J.</creatorcontrib><creatorcontrib>Roach, Devin J.</creatorcontrib><title>Digital Light Process 3D Printing of Magnetically Aligned Liquid Crystalline Elastomer Free–forms</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Liquid crystalline elastomers (LCEs) are anisotropic soft materials capable of large dimensional changes when subjected to a stimulus. The magnitude and directionality of the stimuli‐induced thermomechanical response is associated with the alignment of the LCE. Recent reports detail the preparation of LCEs by additive manufacturing (AM) techniques, predominately using direct ink write printing. Another AM technique, digital light process (DLP) 3D printing, has generated significant interest as it affords LCE free‐forms with high fidelity and resolution. However, one challenge of printing LCEs using vat polymerization methods such as DLP is enforcing alignment. Here, we document the preparation of aligned, main‐chain LCEs via DLP 3D printing using a 100 mT magnetic field. Systematic examination isolates the contribution of magnetic field strength, alignment time, and build layer thickness on the degree of orientation in 3D printed LCEs. Informed by this fundamental understanding, DLP is used to print complex LCE free‐forms with through‐thickness variation in both spatial orientations. The hierarchical variation in spatial orientation within LCE free‐forms is used to produce objects that exhibit mechanical instabilities upon heating. DLP printing of aligned LCEs opens new opportunities to fabricate stimuli‐responsive materials in form factors optimized for functional use in soft robotics and energy absorption. This study introduces the use of a Halbach array to magnetically align a novel liquid crystalline elastomer (LCE) ink which can be used for vat‐based digital light process (DLP) 3D printing. This approach enables 3D printing of geometrically complex LCE free–forms with tailorable alignment, enabling exciting possibilities for designing advanced biomedical devices, soft robotics, or energy‐damping structures.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>actuation</subject><subject>Alignment</subject><subject>Automation</subject><subject>Dimensional changes</subject><subject>Elastomers</subject><subject>Energy absorption</subject><subject>Field strength</subject><subject>Form factors</subject><subject>Industrial robots</subject><subject>liquid crystalline elastomers</subject><subject>Liquid crystals</subject><subject>magnetic alignment</subject><subject>Magnetic fields</subject><subject>mechanical instabilities</subject><subject>Robotics</subject><subject>Stimuli</subject><subject>Thickness</subject><subject>Three dimensional printing</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P3DAQhq2Kqiy01x6RJS69ZBl_Ze3jahdKpUXtoT1HjjNZjJwE7ERob_0P_EN-SY2WgsSF08xIz_to9BLylcGcAfAz23R2zoFLJjmYD2TGFGeFBKMOyAyMUIUppT4kRyndAIApofxEDoWRpTYgZ8St_daPNtCN316P9FccHKZExTqvvh99v6VDS6_stsfROxvCji6Dz1eTE3eTb-gq7lIWBN8jPQ82jUOHkV5ExMe_D-0Qu_SZfGxtSPjleR6TPxfnv1eXxebn9x-r5aZwXGlTWFcvmpo1Qih0otaopEaLi7ZF1CUgawBUWSthXdlyXAgJjgutOeqGW9mKY_Jt772Nw92Eaaw6nxyGYHscplQJxpkyTCuZ0dM36M0wxT5_lylpSsVgwTI131MuDilFbKvb6DsbdxWD6qn-6qn-6qX-HDh51k51h80L_r_vDJg9cO8D7t7RVcv11fJV_g9a_ZJa</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Herman, Jeremy A.</creator><creator>Telles, Rodrigo</creator><creator>Cook, Caitlyn C.</creator><creator>Leguizamon, Samuel C.</creator><creator>Lewis, Jennifer A.</creator><creator>Kaehr, Bryan</creator><creator>White, Timothy J.</creator><creator>Roach, Devin J.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0280-2774</orcidid><orcidid>https://orcid.org/0000-0002-9227-7060</orcidid><orcidid>https://orcid.org/0000-0001-5785-6289</orcidid><orcidid>https://orcid.org/0009-0004-9444-2754</orcidid><orcidid>https://orcid.org/0000-0003-3395-6562</orcidid><orcidid>https://orcid.org/0000-0002-3290-6988</orcidid><orcidid>https://orcid.org/0000-0002-8825-0340</orcidid></search><sort><creationdate>20241201</creationdate><title>Digital Light Process 3D Printing of Magnetically Aligned Liquid Crystalline Elastomer Free–forms</title><author>Herman, Jeremy A. ; Telles, Rodrigo ; Cook, Caitlyn C. ; Leguizamon, Samuel C. ; Lewis, Jennifer A. ; Kaehr, Bryan ; White, Timothy J. ; Roach, Devin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2589-acb7db1d335ec3b8e548eae7ffee860e1d0056b53ac6f2e7340c23882e8d2a4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>actuation</topic><topic>Alignment</topic><topic>Automation</topic><topic>Dimensional changes</topic><topic>Elastomers</topic><topic>Energy absorption</topic><topic>Field strength</topic><topic>Form factors</topic><topic>Industrial robots</topic><topic>liquid crystalline elastomers</topic><topic>Liquid crystals</topic><topic>magnetic alignment</topic><topic>Magnetic fields</topic><topic>mechanical instabilities</topic><topic>Robotics</topic><topic>Stimuli</topic><topic>Thickness</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herman, Jeremy A.</creatorcontrib><creatorcontrib>Telles, Rodrigo</creatorcontrib><creatorcontrib>Cook, Caitlyn C.</creatorcontrib><creatorcontrib>Leguizamon, Samuel C.</creatorcontrib><creatorcontrib>Lewis, Jennifer A.</creatorcontrib><creatorcontrib>Kaehr, Bryan</creatorcontrib><creatorcontrib>White, Timothy J.</creatorcontrib><creatorcontrib>Roach, Devin J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herman, Jeremy A.</au><au>Telles, Rodrigo</au><au>Cook, Caitlyn C.</au><au>Leguizamon, Samuel C.</au><au>Lewis, Jennifer A.</au><au>Kaehr, Bryan</au><au>White, Timothy J.</au><au>Roach, Devin J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital Light Process 3D Printing of Magnetically Aligned Liquid Crystalline Elastomer Free–forms</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>36</volume><issue>52</issue><spage>e2414209</spage><epage>n/a</epage><pages>e2414209-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Liquid crystalline elastomers (LCEs) are anisotropic soft materials capable of large dimensional changes when subjected to a stimulus. The magnitude and directionality of the stimuli‐induced thermomechanical response is associated with the alignment of the LCE. Recent reports detail the preparation of LCEs by additive manufacturing (AM) techniques, predominately using direct ink write printing. Another AM technique, digital light process (DLP) 3D printing, has generated significant interest as it affords LCE free‐forms with high fidelity and resolution. However, one challenge of printing LCEs using vat polymerization methods such as DLP is enforcing alignment. Here, we document the preparation of aligned, main‐chain LCEs via DLP 3D printing using a 100 mT magnetic field. Systematic examination isolates the contribution of magnetic field strength, alignment time, and build layer thickness on the degree of orientation in 3D printed LCEs. Informed by this fundamental understanding, DLP is used to print complex LCE free‐forms with through‐thickness variation in both spatial orientations. The hierarchical variation in spatial orientation within LCE free‐forms is used to produce objects that exhibit mechanical instabilities upon heating. DLP printing of aligned LCEs opens new opportunities to fabricate stimuli‐responsive materials in form factors optimized for functional use in soft robotics and energy absorption. This study introduces the use of a Halbach array to magnetically align a novel liquid crystalline elastomer (LCE) ink which can be used for vat‐based digital light process (DLP) 3D printing. This approach enables 3D printing of geometrically complex LCE free–forms with tailorable alignment, enabling exciting possibilities for designing advanced biomedical devices, soft robotics, or energy‐damping structures.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39468904</pmid><doi>10.1002/adma.202414209</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0280-2774</orcidid><orcidid>https://orcid.org/0000-0002-9227-7060</orcidid><orcidid>https://orcid.org/0000-0001-5785-6289</orcidid><orcidid>https://orcid.org/0009-0004-9444-2754</orcidid><orcidid>https://orcid.org/0000-0003-3395-6562</orcidid><orcidid>https://orcid.org/0000-0002-3290-6988</orcidid><orcidid>https://orcid.org/0000-0002-8825-0340</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-12, Vol.36 (52), p.e2414209-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3121591854
source Wiley Online Library Journals Frontfile Complete
subjects 3-D printers
3D printing
actuation
Alignment
Automation
Dimensional changes
Elastomers
Energy absorption
Field strength
Form factors
Industrial robots
liquid crystalline elastomers
Liquid crystals
magnetic alignment
Magnetic fields
mechanical instabilities
Robotics
Stimuli
Thickness
Three dimensional printing
title Digital Light Process 3D Printing of Magnetically Aligned Liquid Crystalline Elastomer Free–forms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20Light%20Process%203D%20Printing%20of%20Magnetically%20Aligned%20Liquid%20Crystalline%20Elastomer%20Free%E2%80%93forms&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Herman,%20Jeremy%20A.&rft.date=2024-12-01&rft.volume=36&rft.issue=52&rft.spage=e2414209&rft.epage=n/a&rft.pages=e2414209-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202414209&rft_dat=%3Cproquest_cross%3E3121591854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149651071&rft_id=info:pmid/39468904&rfr_iscdi=true