Digital Light Process 3D Printing of Magnetically Aligned Liquid Crystalline Elastomer Free–forms
Liquid crystalline elastomers (LCEs) are anisotropic soft materials capable of large dimensional changes when subjected to a stimulus. The magnitude and directionality of the stimuli‐induced thermomechanical response is associated with the alignment of the LCE. Recent reports detail the preparation...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-12, Vol.36 (52), p.e2414209-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Liquid crystalline elastomers (LCEs) are anisotropic soft materials capable of large dimensional changes when subjected to a stimulus. The magnitude and directionality of the stimuli‐induced thermomechanical response is associated with the alignment of the LCE. Recent reports detail the preparation of LCEs by additive manufacturing (AM) techniques, predominately using direct ink write printing. Another AM technique, digital light process (DLP) 3D printing, has generated significant interest as it affords LCE free‐forms with high fidelity and resolution. However, one challenge of printing LCEs using vat polymerization methods such as DLP is enforcing alignment. Here, we document the preparation of aligned, main‐chain LCEs via DLP 3D printing using a 100 mT magnetic field. Systematic examination isolates the contribution of magnetic field strength, alignment time, and build layer thickness on the degree of orientation in 3D printed LCEs. Informed by this fundamental understanding, DLP is used to print complex LCE free‐forms with through‐thickness variation in both spatial orientations. The hierarchical variation in spatial orientation within LCE free‐forms is used to produce objects that exhibit mechanical instabilities upon heating. DLP printing of aligned LCEs opens new opportunities to fabricate stimuli‐responsive materials in form factors optimized for functional use in soft robotics and energy absorption.
This study introduces the use of a Halbach array to magnetically align a novel liquid crystalline elastomer (LCE) ink which can be used for vat‐based digital light process (DLP) 3D printing. This approach enables 3D printing of geometrically complex LCE free–forms with tailorable alignment, enabling exciting possibilities for designing advanced biomedical devices, soft robotics, or energy‐damping structures. |
---|---|
ISSN: | 0935-9648 1521-4095 1521-4095 |
DOI: | 10.1002/adma.202414209 |