Computational chemistry facilitates the development of second near-infrared xanthene-based dyes

Context The dyes in the second near-infrared (NIR-II) region play a crucial role in advancing imaging technology. However, developing small-molecule dyes in NIR-II poses a significant bottleneck to meet the substantial demands in biological fields, which may be attributed to the lack of a rational d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular modeling 2024-11, Vol.30 (11), p.385, Article 385
Hauptverfasser: Yuan, Qinlin, Wang, Mingyu, Ma, Mingyue, Sun, Pingping, Zeng, Chaoyuan, Chi, Weijie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Context The dyes in the second near-infrared (NIR-II) region play a crucial role in advancing imaging technology. However, developing small-molecule dyes in NIR-II poses a significant bottleneck to meet the substantial demands in biological fields, which may be attributed to the lack of a rational design strategy. Herein, we designed a series of rhodamine analogs with more red-shifted emission by replacing the oxygen-bridge atom in xanthene-based dyes with –C(CH 3 ) 2 , –Si(CH 3 ) 2 , –SO 2 , and –P(O)Ph. We investigated the frontier molecular orbital, electrostatic potential surfaces, the interaction region indicator, electron–hole distribution, and absorption and emission spectrum of xanthene-based dyes using (time-dependent) density functional theory. Our results demonstrated that these designed small molecular dyes exhibit long emission wavelengths covering 1377–1809 nm. We expected these findings to enable the targeted design of long-wavelength rhodamines. Method Geometry optimization of dyes in the ground and excited states was carried out at ω-B97XD/Def2SVP level using Gaussian 16 A03. The absorption and emission wavelengths were evaluated using 13 functional, including TPSSH, O3LYP, B3LYP*, B3LYP, PBE0, MPW1B95, PBE-1/3, PBE38, MPWB1K, MN15, BHandHLYP, ω-B97XD, and CAM-B3LYP.
ISSN:1610-2940
0948-5023
0948-5023
DOI:10.1007/s00894-024-06179-6