Broadband Light Harvesting from Scalable Two-Dimensional Semiconductor Multi-Heterostructures
Broadband absorption in the visible spectrum is essential in optoelectronic applications that involve power conversion such as photovoltaics and photocatalysis. Most ultrathin broadband absorbers use parasitic plasmonic structures that maximize absorption using surface plasmons and/or Fabry–Perot ca...
Gespeichert in:
Veröffentlicht in: | Nano letters 2024-11, Vol.24 (44), p.13935-13944 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13944 |
---|---|
container_issue | 44 |
container_start_page | 13935 |
container_title | Nano letters |
container_volume | 24 |
creator | Lin, Da Lynch, Jason Wang, Sudong Hu, Zekun Rai, Rajeev Kumar Zhang, Huairuo Chen, Chen Kumari, Shalini Stach, Eric A. Davydov, Albert V. Redwing, Joan M. Jariwala, Deep |
description | Broadband absorption in the visible spectrum is essential in optoelectronic applications that involve power conversion such as photovoltaics and photocatalysis. Most ultrathin broadband absorbers use parasitic plasmonic structures that maximize absorption using surface plasmons and/or Fabry–Perot cavities, which limits the weight efficiency of the device. Here, we show the theoretical and experimental realization of an unpatterned/planar semiconductor thin-film absorber based on monolayer transition-metal dichalcogenides. We experimentally demonstrate an average total absorption in the visible range (450–700 nm) of >70% using 300 W g–1 may be achieved in a photovoltaic cell based on this metamaterial absorber. |
doi_str_mv | 10.1021/acs.nanolett.4c02963 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3121589106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121589106</sourcerecordid><originalsourceid>FETCH-LOGICAL-a227t-8d8b17381232e0b0b1607143d4268a10562a3b9a29c02e55069198e5e1744cb83</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwhlySbFrzjxEsqjSEUsWpbIspNpSZXExXZA_D2u2rJkNaPRvTN3DkKXBI8JpuRGl37c6c42EMKYl5hKwY7QkGQMp0JKevzXF3yAzrxfY4wly_ApGjDJhcilHKL3O2d1ZXRXJbN69RGSqXZf4EPdrZKls20yL3WjTQPJ4tum93ULna9tp5tkDm1d2q7qy2Bd8tI3oU6nEMBZH1wc9g78OTpZ6sbDxb6O0Nvjw2IyTWevT8-T21mqKc1DWlSFITkrCGUUsMGGCJwTzipORaEJzgTVzEhNZXwTsgwLSWQBGZCc89IUbISud3s3zn72Mb5qa19C0-gObO8VI5RkhSRYRCnfScsY1DtYqo2rW-1-FMFqC1ZFsOoAVu3BRtvV_kJvWqj-TAeSUYB3gq19bXsXGfn_d_4Cf6uIUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121589106</pqid></control><display><type>article</type><title>Broadband Light Harvesting from Scalable Two-Dimensional Semiconductor Multi-Heterostructures</title><source>American Chemical Society Journals</source><creator>Lin, Da ; Lynch, Jason ; Wang, Sudong ; Hu, Zekun ; Rai, Rajeev Kumar ; Zhang, Huairuo ; Chen, Chen ; Kumari, Shalini ; Stach, Eric A. ; Davydov, Albert V. ; Redwing, Joan M. ; Jariwala, Deep</creator><creatorcontrib>Lin, Da ; Lynch, Jason ; Wang, Sudong ; Hu, Zekun ; Rai, Rajeev Kumar ; Zhang, Huairuo ; Chen, Chen ; Kumari, Shalini ; Stach, Eric A. ; Davydov, Albert V. ; Redwing, Joan M. ; Jariwala, Deep</creatorcontrib><description>Broadband absorption in the visible spectrum is essential in optoelectronic applications that involve power conversion such as photovoltaics and photocatalysis. Most ultrathin broadband absorbers use parasitic plasmonic structures that maximize absorption using surface plasmons and/or Fabry–Perot cavities, which limits the weight efficiency of the device. Here, we show the theoretical and experimental realization of an unpatterned/planar semiconductor thin-film absorber based on monolayer transition-metal dichalcogenides. We experimentally demonstrate an average total absorption in the visible range (450–700 nm) of >70% using <4 nm of semiconductor absorbing materials scalable over large areas with vapor phase growth techniques. Our analysis suggests that a power conversion efficiency of 15.54% and a specific power >300 W g–1 may be achieved in a photovoltaic cell based on this metamaterial absorber.</description><identifier>ISSN: 1530-6984</identifier><identifier>ISSN: 1530-6992</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.4c02963</identifier><identifier>PMID: 39466799</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2024-11, Vol.24 (44), p.13935-13944</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a227t-8d8b17381232e0b0b1607143d4268a10562a3b9a29c02e55069198e5e1744cb83</cites><orcidid>0000-0002-3366-2153 ; 0000-0002-7906-452X ; 0000-0002-1984-1200 ; 0000-0002-2248-7601 ; 0000-0001-6457-2858 ; 0000-0002-3570-8768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.4c02963$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.4c02963$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39466799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Da</creatorcontrib><creatorcontrib>Lynch, Jason</creatorcontrib><creatorcontrib>Wang, Sudong</creatorcontrib><creatorcontrib>Hu, Zekun</creatorcontrib><creatorcontrib>Rai, Rajeev Kumar</creatorcontrib><creatorcontrib>Zhang, Huairuo</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Kumari, Shalini</creatorcontrib><creatorcontrib>Stach, Eric A.</creatorcontrib><creatorcontrib>Davydov, Albert V.</creatorcontrib><creatorcontrib>Redwing, Joan M.</creatorcontrib><creatorcontrib>Jariwala, Deep</creatorcontrib><title>Broadband Light Harvesting from Scalable Two-Dimensional Semiconductor Multi-Heterostructures</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Broadband absorption in the visible spectrum is essential in optoelectronic applications that involve power conversion such as photovoltaics and photocatalysis. Most ultrathin broadband absorbers use parasitic plasmonic structures that maximize absorption using surface plasmons and/or Fabry–Perot cavities, which limits the weight efficiency of the device. Here, we show the theoretical and experimental realization of an unpatterned/planar semiconductor thin-film absorber based on monolayer transition-metal dichalcogenides. We experimentally demonstrate an average total absorption in the visible range (450–700 nm) of >70% using <4 nm of semiconductor absorbing materials scalable over large areas with vapor phase growth techniques. Our analysis suggests that a power conversion efficiency of 15.54% and a specific power >300 W g–1 may be achieved in a photovoltaic cell based on this metamaterial absorber.</description><issn>1530-6984</issn><issn>1530-6992</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EoqXwBwhlySbFrzjxEsqjSEUsWpbIspNpSZXExXZA_D2u2rJkNaPRvTN3DkKXBI8JpuRGl37c6c42EMKYl5hKwY7QkGQMp0JKevzXF3yAzrxfY4wly_ApGjDJhcilHKL3O2d1ZXRXJbN69RGSqXZf4EPdrZKls20yL3WjTQPJ4tum93ULna9tp5tkDm1d2q7qy2Bd8tI3oU6nEMBZH1wc9g78OTpZ6sbDxb6O0Nvjw2IyTWevT8-T21mqKc1DWlSFITkrCGUUsMGGCJwTzipORaEJzgTVzEhNZXwTsgwLSWQBGZCc89IUbISud3s3zn72Mb5qa19C0-gObO8VI5RkhSRYRCnfScsY1DtYqo2rW-1-FMFqC1ZFsOoAVu3BRtvV_kJvWqj-TAeSUYB3gq19bXsXGfn_d_4Cf6uIUQ</recordid><startdate>20241106</startdate><enddate>20241106</enddate><creator>Lin, Da</creator><creator>Lynch, Jason</creator><creator>Wang, Sudong</creator><creator>Hu, Zekun</creator><creator>Rai, Rajeev Kumar</creator><creator>Zhang, Huairuo</creator><creator>Chen, Chen</creator><creator>Kumari, Shalini</creator><creator>Stach, Eric A.</creator><creator>Davydov, Albert V.</creator><creator>Redwing, Joan M.</creator><creator>Jariwala, Deep</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3366-2153</orcidid><orcidid>https://orcid.org/0000-0002-7906-452X</orcidid><orcidid>https://orcid.org/0000-0002-1984-1200</orcidid><orcidid>https://orcid.org/0000-0002-2248-7601</orcidid><orcidid>https://orcid.org/0000-0001-6457-2858</orcidid><orcidid>https://orcid.org/0000-0002-3570-8768</orcidid></search><sort><creationdate>20241106</creationdate><title>Broadband Light Harvesting from Scalable Two-Dimensional Semiconductor Multi-Heterostructures</title><author>Lin, Da ; Lynch, Jason ; Wang, Sudong ; Hu, Zekun ; Rai, Rajeev Kumar ; Zhang, Huairuo ; Chen, Chen ; Kumari, Shalini ; Stach, Eric A. ; Davydov, Albert V. ; Redwing, Joan M. ; Jariwala, Deep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a227t-8d8b17381232e0b0b1607143d4268a10562a3b9a29c02e55069198e5e1744cb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Da</creatorcontrib><creatorcontrib>Lynch, Jason</creatorcontrib><creatorcontrib>Wang, Sudong</creatorcontrib><creatorcontrib>Hu, Zekun</creatorcontrib><creatorcontrib>Rai, Rajeev Kumar</creatorcontrib><creatorcontrib>Zhang, Huairuo</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Kumari, Shalini</creatorcontrib><creatorcontrib>Stach, Eric A.</creatorcontrib><creatorcontrib>Davydov, Albert V.</creatorcontrib><creatorcontrib>Redwing, Joan M.</creatorcontrib><creatorcontrib>Jariwala, Deep</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Da</au><au>Lynch, Jason</au><au>Wang, Sudong</au><au>Hu, Zekun</au><au>Rai, Rajeev Kumar</au><au>Zhang, Huairuo</au><au>Chen, Chen</au><au>Kumari, Shalini</au><au>Stach, Eric A.</au><au>Davydov, Albert V.</au><au>Redwing, Joan M.</au><au>Jariwala, Deep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband Light Harvesting from Scalable Two-Dimensional Semiconductor Multi-Heterostructures</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2024-11-06</date><risdate>2024</risdate><volume>24</volume><issue>44</issue><spage>13935</spage><epage>13944</epage><pages>13935-13944</pages><issn>1530-6984</issn><issn>1530-6992</issn><eissn>1530-6992</eissn><abstract>Broadband absorption in the visible spectrum is essential in optoelectronic applications that involve power conversion such as photovoltaics and photocatalysis. Most ultrathin broadband absorbers use parasitic plasmonic structures that maximize absorption using surface plasmons and/or Fabry–Perot cavities, which limits the weight efficiency of the device. Here, we show the theoretical and experimental realization of an unpatterned/planar semiconductor thin-film absorber based on monolayer transition-metal dichalcogenides. We experimentally demonstrate an average total absorption in the visible range (450–700 nm) of >70% using <4 nm of semiconductor absorbing materials scalable over large areas with vapor phase growth techniques. Our analysis suggests that a power conversion efficiency of 15.54% and a specific power >300 W g–1 may be achieved in a photovoltaic cell based on this metamaterial absorber.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39466799</pmid><doi>10.1021/acs.nanolett.4c02963</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3366-2153</orcidid><orcidid>https://orcid.org/0000-0002-7906-452X</orcidid><orcidid>https://orcid.org/0000-0002-1984-1200</orcidid><orcidid>https://orcid.org/0000-0002-2248-7601</orcidid><orcidid>https://orcid.org/0000-0001-6457-2858</orcidid><orcidid>https://orcid.org/0000-0002-3570-8768</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2024-11, Vol.24 (44), p.13935-13944 |
issn | 1530-6984 1530-6992 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_3121589106 |
source | American Chemical Society Journals |
title | Broadband Light Harvesting from Scalable Two-Dimensional Semiconductor Multi-Heterostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20Light%20Harvesting%20from%20Scalable%20Two-Dimensional%20Semiconductor%20Multi-Heterostructures&rft.jtitle=Nano%20letters&rft.au=Lin,%20Da&rft.date=2024-11-06&rft.volume=24&rft.issue=44&rft.spage=13935&rft.epage=13944&rft.pages=13935-13944&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.4c02963&rft_dat=%3Cproquest_cross%3E3121589106%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121589106&rft_id=info:pmid/39466799&rfr_iscdi=true |