Broadband Light Harvesting from Scalable Two-Dimensional Semiconductor Multi-Heterostructures

Broadband absorption in the visible spectrum is essential in optoelectronic applications that involve power conversion such as photovoltaics and photocatalysis. Most ultrathin broadband absorbers use parasitic plasmonic structures that maximize absorption using surface plasmons and/or Fabry–Perot ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2024-11, Vol.24 (44), p.13935-13944
Hauptverfasser: Lin, Da, Lynch, Jason, Wang, Sudong, Hu, Zekun, Rai, Rajeev Kumar, Zhang, Huairuo, Chen, Chen, Kumari, Shalini, Stach, Eric A., Davydov, Albert V., Redwing, Joan M., Jariwala, Deep
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13944
container_issue 44
container_start_page 13935
container_title Nano letters
container_volume 24
creator Lin, Da
Lynch, Jason
Wang, Sudong
Hu, Zekun
Rai, Rajeev Kumar
Zhang, Huairuo
Chen, Chen
Kumari, Shalini
Stach, Eric A.
Davydov, Albert V.
Redwing, Joan M.
Jariwala, Deep
description Broadband absorption in the visible spectrum is essential in optoelectronic applications that involve power conversion such as photovoltaics and photocatalysis. Most ultrathin broadband absorbers use parasitic plasmonic structures that maximize absorption using surface plasmons and/or Fabry–Perot cavities, which limits the weight efficiency of the device. Here, we show the theoretical and experimental realization of an unpatterned/planar semiconductor thin-film absorber based on monolayer transition-metal dichalcogenides. We experimentally demonstrate an average total absorption in the visible range (450–700 nm) of >70% using 300 W g–1 may be achieved in a photovoltaic cell based on this metamaterial absorber.
doi_str_mv 10.1021/acs.nanolett.4c02963
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3121589106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121589106</sourcerecordid><originalsourceid>FETCH-LOGICAL-a227t-8d8b17381232e0b0b1607143d4268a10562a3b9a29c02e55069198e5e1744cb83</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwhlySbFrzjxEsqjSEUsWpbIspNpSZXExXZA_D2u2rJkNaPRvTN3DkKXBI8JpuRGl37c6c42EMKYl5hKwY7QkGQMp0JKevzXF3yAzrxfY4wly_ApGjDJhcilHKL3O2d1ZXRXJbN69RGSqXZf4EPdrZKls20yL3WjTQPJ4tum93ULna9tp5tkDm1d2q7qy2Bd8tI3oU6nEMBZH1wc9g78OTpZ6sbDxb6O0Nvjw2IyTWevT8-T21mqKc1DWlSFITkrCGUUsMGGCJwTzipORaEJzgTVzEhNZXwTsgwLSWQBGZCc89IUbISud3s3zn72Mb5qa19C0-gObO8VI5RkhSRYRCnfScsY1DtYqo2rW-1-FMFqC1ZFsOoAVu3BRtvV_kJvWqj-TAeSUYB3gq19bXsXGfn_d_4Cf6uIUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121589106</pqid></control><display><type>article</type><title>Broadband Light Harvesting from Scalable Two-Dimensional Semiconductor Multi-Heterostructures</title><source>American Chemical Society Journals</source><creator>Lin, Da ; Lynch, Jason ; Wang, Sudong ; Hu, Zekun ; Rai, Rajeev Kumar ; Zhang, Huairuo ; Chen, Chen ; Kumari, Shalini ; Stach, Eric A. ; Davydov, Albert V. ; Redwing, Joan M. ; Jariwala, Deep</creator><creatorcontrib>Lin, Da ; Lynch, Jason ; Wang, Sudong ; Hu, Zekun ; Rai, Rajeev Kumar ; Zhang, Huairuo ; Chen, Chen ; Kumari, Shalini ; Stach, Eric A. ; Davydov, Albert V. ; Redwing, Joan M. ; Jariwala, Deep</creatorcontrib><description>Broadband absorption in the visible spectrum is essential in optoelectronic applications that involve power conversion such as photovoltaics and photocatalysis. Most ultrathin broadband absorbers use parasitic plasmonic structures that maximize absorption using surface plasmons and/or Fabry–Perot cavities, which limits the weight efficiency of the device. Here, we show the theoretical and experimental realization of an unpatterned/planar semiconductor thin-film absorber based on monolayer transition-metal dichalcogenides. We experimentally demonstrate an average total absorption in the visible range (450–700 nm) of &gt;70% using &lt;4 nm of semiconductor absorbing materials scalable over large areas with vapor phase growth techniques. Our analysis suggests that a power conversion efficiency of 15.54% and a specific power &gt;300 W g–1 may be achieved in a photovoltaic cell based on this metamaterial absorber.</description><identifier>ISSN: 1530-6984</identifier><identifier>ISSN: 1530-6992</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.4c02963</identifier><identifier>PMID: 39466799</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2024-11, Vol.24 (44), p.13935-13944</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a227t-8d8b17381232e0b0b1607143d4268a10562a3b9a29c02e55069198e5e1744cb83</cites><orcidid>0000-0002-3366-2153 ; 0000-0002-7906-452X ; 0000-0002-1984-1200 ; 0000-0002-2248-7601 ; 0000-0001-6457-2858 ; 0000-0002-3570-8768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.4c02963$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.4c02963$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39466799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Da</creatorcontrib><creatorcontrib>Lynch, Jason</creatorcontrib><creatorcontrib>Wang, Sudong</creatorcontrib><creatorcontrib>Hu, Zekun</creatorcontrib><creatorcontrib>Rai, Rajeev Kumar</creatorcontrib><creatorcontrib>Zhang, Huairuo</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Kumari, Shalini</creatorcontrib><creatorcontrib>Stach, Eric A.</creatorcontrib><creatorcontrib>Davydov, Albert V.</creatorcontrib><creatorcontrib>Redwing, Joan M.</creatorcontrib><creatorcontrib>Jariwala, Deep</creatorcontrib><title>Broadband Light Harvesting from Scalable Two-Dimensional Semiconductor Multi-Heterostructures</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Broadband absorption in the visible spectrum is essential in optoelectronic applications that involve power conversion such as photovoltaics and photocatalysis. Most ultrathin broadband absorbers use parasitic plasmonic structures that maximize absorption using surface plasmons and/or Fabry–Perot cavities, which limits the weight efficiency of the device. Here, we show the theoretical and experimental realization of an unpatterned/planar semiconductor thin-film absorber based on monolayer transition-metal dichalcogenides. We experimentally demonstrate an average total absorption in the visible range (450–700 nm) of &gt;70% using &lt;4 nm of semiconductor absorbing materials scalable over large areas with vapor phase growth techniques. Our analysis suggests that a power conversion efficiency of 15.54% and a specific power &gt;300 W g–1 may be achieved in a photovoltaic cell based on this metamaterial absorber.</description><issn>1530-6984</issn><issn>1530-6992</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EoqXwBwhlySbFrzjxEsqjSEUsWpbIspNpSZXExXZA_D2u2rJkNaPRvTN3DkKXBI8JpuRGl37c6c42EMKYl5hKwY7QkGQMp0JKevzXF3yAzrxfY4wly_ApGjDJhcilHKL3O2d1ZXRXJbN69RGSqXZf4EPdrZKls20yL3WjTQPJ4tum93ULna9tp5tkDm1d2q7qy2Bd8tI3oU6nEMBZH1wc9g78OTpZ6sbDxb6O0Nvjw2IyTWevT8-T21mqKc1DWlSFITkrCGUUsMGGCJwTzipORaEJzgTVzEhNZXwTsgwLSWQBGZCc89IUbISud3s3zn72Mb5qa19C0-gObO8VI5RkhSRYRCnfScsY1DtYqo2rW-1-FMFqC1ZFsOoAVu3BRtvV_kJvWqj-TAeSUYB3gq19bXsXGfn_d_4Cf6uIUQ</recordid><startdate>20241106</startdate><enddate>20241106</enddate><creator>Lin, Da</creator><creator>Lynch, Jason</creator><creator>Wang, Sudong</creator><creator>Hu, Zekun</creator><creator>Rai, Rajeev Kumar</creator><creator>Zhang, Huairuo</creator><creator>Chen, Chen</creator><creator>Kumari, Shalini</creator><creator>Stach, Eric A.</creator><creator>Davydov, Albert V.</creator><creator>Redwing, Joan M.</creator><creator>Jariwala, Deep</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3366-2153</orcidid><orcidid>https://orcid.org/0000-0002-7906-452X</orcidid><orcidid>https://orcid.org/0000-0002-1984-1200</orcidid><orcidid>https://orcid.org/0000-0002-2248-7601</orcidid><orcidid>https://orcid.org/0000-0001-6457-2858</orcidid><orcidid>https://orcid.org/0000-0002-3570-8768</orcidid></search><sort><creationdate>20241106</creationdate><title>Broadband Light Harvesting from Scalable Two-Dimensional Semiconductor Multi-Heterostructures</title><author>Lin, Da ; Lynch, Jason ; Wang, Sudong ; Hu, Zekun ; Rai, Rajeev Kumar ; Zhang, Huairuo ; Chen, Chen ; Kumari, Shalini ; Stach, Eric A. ; Davydov, Albert V. ; Redwing, Joan M. ; Jariwala, Deep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a227t-8d8b17381232e0b0b1607143d4268a10562a3b9a29c02e55069198e5e1744cb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Da</creatorcontrib><creatorcontrib>Lynch, Jason</creatorcontrib><creatorcontrib>Wang, Sudong</creatorcontrib><creatorcontrib>Hu, Zekun</creatorcontrib><creatorcontrib>Rai, Rajeev Kumar</creatorcontrib><creatorcontrib>Zhang, Huairuo</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Kumari, Shalini</creatorcontrib><creatorcontrib>Stach, Eric A.</creatorcontrib><creatorcontrib>Davydov, Albert V.</creatorcontrib><creatorcontrib>Redwing, Joan M.</creatorcontrib><creatorcontrib>Jariwala, Deep</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Da</au><au>Lynch, Jason</au><au>Wang, Sudong</au><au>Hu, Zekun</au><au>Rai, Rajeev Kumar</au><au>Zhang, Huairuo</au><au>Chen, Chen</au><au>Kumari, Shalini</au><au>Stach, Eric A.</au><au>Davydov, Albert V.</au><au>Redwing, Joan M.</au><au>Jariwala, Deep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband Light Harvesting from Scalable Two-Dimensional Semiconductor Multi-Heterostructures</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2024-11-06</date><risdate>2024</risdate><volume>24</volume><issue>44</issue><spage>13935</spage><epage>13944</epage><pages>13935-13944</pages><issn>1530-6984</issn><issn>1530-6992</issn><eissn>1530-6992</eissn><abstract>Broadband absorption in the visible spectrum is essential in optoelectronic applications that involve power conversion such as photovoltaics and photocatalysis. Most ultrathin broadband absorbers use parasitic plasmonic structures that maximize absorption using surface plasmons and/or Fabry–Perot cavities, which limits the weight efficiency of the device. Here, we show the theoretical and experimental realization of an unpatterned/planar semiconductor thin-film absorber based on monolayer transition-metal dichalcogenides. We experimentally demonstrate an average total absorption in the visible range (450–700 nm) of &gt;70% using &lt;4 nm of semiconductor absorbing materials scalable over large areas with vapor phase growth techniques. Our analysis suggests that a power conversion efficiency of 15.54% and a specific power &gt;300 W g–1 may be achieved in a photovoltaic cell based on this metamaterial absorber.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39466799</pmid><doi>10.1021/acs.nanolett.4c02963</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3366-2153</orcidid><orcidid>https://orcid.org/0000-0002-7906-452X</orcidid><orcidid>https://orcid.org/0000-0002-1984-1200</orcidid><orcidid>https://orcid.org/0000-0002-2248-7601</orcidid><orcidid>https://orcid.org/0000-0001-6457-2858</orcidid><orcidid>https://orcid.org/0000-0002-3570-8768</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2024-11, Vol.24 (44), p.13935-13944
issn 1530-6984
1530-6992
1530-6992
language eng
recordid cdi_proquest_miscellaneous_3121589106
source American Chemical Society Journals
title Broadband Light Harvesting from Scalable Two-Dimensional Semiconductor Multi-Heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20Light%20Harvesting%20from%20Scalable%20Two-Dimensional%20Semiconductor%20Multi-Heterostructures&rft.jtitle=Nano%20letters&rft.au=Lin,%20Da&rft.date=2024-11-06&rft.volume=24&rft.issue=44&rft.spage=13935&rft.epage=13944&rft.pages=13935-13944&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.4c02963&rft_dat=%3Cproquest_cross%3E3121589106%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121589106&rft_id=info:pmid/39466799&rfr_iscdi=true