The effects of different pretreatment technologies on microbial community in anaerobic digestion process: A systematic review

Here we comprehensively review the available knowledge on effects of different pretreatment technologies on microbial population and microbial dynamics in anaerobic digestion (AD) fed with different substrates and different operational parameters. To identify peer-reviewed studies published in Engli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental health science and engineering 2024-12, Vol.22 (2), p.439-453
Hauptverfasser: Pasalari, Hasan, Gharibi, Hamed, Darvishali, Siamak, Farzadkia, Mahdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here we comprehensively review the available knowledge on effects of different pretreatment technologies on microbial population and microbial dynamics in anaerobic digestion (AD) fed with different substrates and different operational parameters. To identify peer-reviewed studies published in English-language journals, a comprehensive search was performed across multiple electronic databases. The eligible studies were analyzed to extract data and information pertaining to the configuration of anaerobic reactors, operational parameters, and various pretreatment processes such as chemical, biological, enzymatic, thermal, microaerobic, and ultrasonic. The findings derived from this current review demonstrated that different chemical, biological, and physical pretreatment technologies improve the biomethane potential (BMP) and potentially affect the dominant bacteria and archaea. Moreover, although hydrogenotrophic methanogenesis are more observed due to resistance to extreme conditions, methane production follows both aceticlastic and hydrogenotrophic pathways in AD assisted with different pretreatment process. Firmicutes and Bacteroidetes phyla of bacteria were the dominant hydrolytic bacteria due to synergetic effects of different pretreatment process on solubilization and bioavailability of recalcitrant substrates. In summary, a holistic understanding on bacteria and archaea communities, along with the mechanisms of the dominant microorganisms leads to enhanced stability and overall performance of anaerobic digestion (AD) processes.
ISSN:2052-336X
2052-336X
DOI:10.1007/s40201-024-00917-x