Impact of solvent and water activity on lipase selectivity and acyl migration of ARA-rich 2-monoacylglycerols in catalytic systems: Kinetic study by particle swarm optimization
The 2-arachidonoylglycerol enzymatic alcoholysis reaction model was established and kinetic parameters were calculated to explore the effects of solvent and water activity (aw) on the lipase positional selectivity and 2-monoacylglycerol acyl migration. Six rate constants (k1-k6) with the lowest mean...
Gespeichert in:
Veröffentlicht in: | Food chemistry 2025-02, Vol.464 (Pt 2), p.141709, Article 141709 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The 2-arachidonoylglycerol enzymatic alcoholysis reaction model was established and kinetic parameters were calculated to explore the effects of solvent and water activity (aw) on the lipase positional selectivity and 2-monoacylglycerol acyl migration. Six rate constants (k1-k6) with the lowest mean square error were obtained using the particle swarm optimization algorithm, and the calculated molar concentration-time curves were well-fitted to the actual curves. As an indicator to characterize the positional selectivity of lipase, k5/k3 was significantly associated with log P of solvent, which first increased and then decreased with the increase of aw. The highest sn-1,3 selectivity of Lipozyme TL IM was found at the aw of 0.53. The changes of acyl migration with the solvent and aw in the enzymatic and non-catalytic systems showed a consistent law. This study provides theoretical support for the targeted synthesis of structural lipids and enzymatic production of diverse structural lipid products.
[Display omitted]
•An enzymatic alcoholysis model for 2-arachidonoylglycerol was established.•Particle Swarm Optimization can be applied to the calculation of rate constants.•Solvent log P values had a significant correlation with enzyme selectivity.•Lipase sn-1,3 selectivity first increased and then decreased with water activity.•Acyl migration in enzymatic and non-catalytic systems showed a consistent law. |
---|---|
ISSN: | 0308-8146 1873-7072 1873-7072 |
DOI: | 10.1016/j.foodchem.2024.141709 |