Zn2+ ions improve the fidelity of metal-mediated primer extension while suppressing intrinsic and Mn2+-induced mutagenic effects by DNA polymerases
While Mn2+ ions are well-established for reducing the fidelity of DNA polymerases, leading to the misincorporation of nucleotides, our investigation of the effects of metal ions revealed a contrasting role of Zn2+. Here, we demonstrate that Zn2+ ions enhance the fidelity of DNA polymerases (the 3′ →...
Gespeichert in:
Veröffentlicht in: | Organic & biomolecular chemistry 2024-11, Vol.22 (46), p.9094-9100 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | While Mn2+ ions are well-established for reducing the fidelity of DNA polymerases, leading to the misincorporation of nucleotides, our investigation of the effects of metal ions revealed a contrasting role of Zn2+. Here, we demonstrate that Zn2+ ions enhance the fidelity of DNA polymerases (the 3′ → 5′ exonuclease-deficient Klenow fragment and Taq DNA polymerase) by suppressing misincorporation during primer extension reactions. Remarkably, Zn2+ ions inhibit both intrinsic misincorporation and Mn2+-induced misincorporation of nucleotides. Furthermore, Zn2+ ions also effectively suppressed misincorporation during metal-mediated primer extension reactions, which involved forming Ag+ and Hg2+ ion-mediated base pairs. These findings suggest that Zn2+ ions inhibit both intrinsic and Mn2+-induced mismatched base pair formation. Consequently, the combined use of Mn2+ and Zn2+ ions may offer a strategy for precisely regulating the fidelity of DNA polymerases. Remarkably, Zn2+ ions even suppress misincorporation in primer extension reactions that rely on metal-mediated base pairs, and conversely, this suggests that DNA polymerases recognize metal-mediated base pairs such as T-Hg2+-T, C-Ag+-A, and C-Ag+-T as relatively stable base pairs. These results imply that Zn2+ ions may also enhance the fidelity of DNA polymerases when incorporating non-canonical nucleobases, potentially paving the way for the expansion of the genetic alphabet. |
---|---|
ISSN: | 1477-0520 1477-0539 1477-0539 |
DOI: | 10.1039/d4ob01433b |