Efficient conversion from food waste to composite carbon source through rapid fermentation and ceramic membrane filtration

Anaerobic fermentation of food waste (FW) produces a broth rich in small-molecule organic substances, which has the potential as a composite carbon source for denitrification in wastewater treatment. In this study, the idea was tested by optimizing the fermentation process at different hydraulic res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2024-11, Vol.367, p.143601, Article 143601
Hauptverfasser: Xiao, Yongzhi, Yang, Luxin, Sun, Caiping, Li, Huan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anaerobic fermentation of food waste (FW) produces a broth rich in small-molecule organic substances, which has the potential as a composite carbon source for denitrification in wastewater treatment. In this study, the idea was tested by optimizing the fermentation process at different hydraulic residence time (HRT), refining fermentation broth through ceramic membrane filtration, and comparing the performance of fermentation filtrate and other commercial carbon sources. A short HRT of 3 days was a suitable fermentation condition with 88% polysaccharide degradation. Acetic acid contributed 40% of soluble chemical oxygen demand in the fermentation broth, followed by ethanol, propanol, lactic acid, and propionic acid, and the five products accounted for 80%. Ceramic membrane filtration can recover more than 70% of dissolved organic matter and more than 60% of small molecular organic matter and simultaneously remove 99% of SS, 41% of total nitrogen, and 62% of total phosphorus. At the rapid degradation stage, the denitrification rates reached 6.68–10.39 mg NOx−-N/(g VSS·h), which was on par with commercial carbon sources. The short fermentation and the rapid membrane separation were integrated to create an efficient treatment system, which provided a feasible pathway to utilize FW combining wastewater treatment. [Display omitted] •A new pathway from food waste to high-quality composite carbon source is developed.•Short hydraulic retention time is suitable for producing volatile organic matter.•Ceramic membrane filtration can remove particles and part of nitrogen and phosphorus.•Acetate, lactate, propionate, propanol, and ethanol are the primary components.•Fermentation filtrate has a good denitrification ability at the COD/TN ratio of 4–6.
ISSN:0045-6535
1879-1298
1879-1298
DOI:10.1016/j.chemosphere.2024.143601