Research advance in the effects of litter input on forest soil organic carbon transformation and stability

The turnover and stabilization of soil organic carbon are tightly associated with the properties of litter input. Due to the complexity of litter decomposition and the high heterogeneity of forest soils, there are considerable uncertainties about how soil minerals, microorganisms, and environmental...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ying yong sheng tai xue bao 2024-09, Vol.35 (9), p.2352
Hauptverfasser: Guo, Xiao-Wei, Zhang, Yu-Xue, You, Ye-Ming, Sun, Jian-Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The turnover and stabilization of soil organic carbon are tightly associated with the properties of litter input. Due to the complexity of litter decomposition and the high heterogeneity of forest soils, there are considerable uncertainties about how soil minerals, microorganisms, and environmental factors jointly regulate the transformation and stability of litter-derived soil organic carbon. Here, we present an overview of the "microbial efficiency-matrix stabilization" framework centered on microbial metabolism and organic carbon transformation, as well as the new "microbial carbon pump" and "mineral carbon pump" theories in forest soil organic carbon transformation and stabilization. We specifically highlighted a differential mechanism of "organo-organic interfaces" from the "organo-mineral interfaces" in the effects on soil organic carbon accumulation. We further expounded the transformation processes and stability of soil organic carbon based on the "carbon material cycling" and "energy fluxes", aiming to provide theoretical support for the research on carbon sequestration in forest soils.
ISSN:1001-9332
DOI:10.13287/j.1001-9332.202409.033