Expanding the Toolbox of Oxidants: Controllable Etching of Ultrasmall Au Nanoparticles toward Tailorable NIR-II Luminescence and Ligand-Mediated Biodistribution and Clearance

Oxidant-driven and controllable etching of small-sized nanoparticles (NPs, d < 3 nm) and tailorable modulation of their optical properties are challenging due to the high reactivity and complicated surface chemistry. Herein, we present a facile strategy for highly controllable oxidative etching o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2024-11, Vol.96 (44), p.17840-17849
Hauptverfasser: Zhou, Tingyao, Hu, Chao, He, Kui, Li, Zheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oxidant-driven and controllable etching of small-sized nanoparticles (NPs, d < 3 nm) and tailorable modulation of their optical properties are challenging due to the high reactivity and complicated surface chemistry. Herein, we present a facile strategy for highly controllable oxidative etching of ultrasmall AuNPs and tailorable modulation of luminescence. The proper choice of a moderate oxidant, ClO–, could not only selectively etch the Au­(I)-thiolate motifs from the nanoparticle surface at the subnanometer scale but also retained a stable metallic core structure without aggregation, which impressively prompted the wide-range luminescent switching from the visible to second near-infrared (NIR-II) region. The resultant oxidized AuNPs displayed highly luminescent NIR-II emission with a quantum yield of 3.0%, excellent monodispersed stability, ideal biocompatibility, and tunable shielding effects against protein adsorption. With those outstanding features, oxidized AuNPs could be utilized as nanoprobes for long-lasting and in vivo bioimaging of associated metabolic behaviors with distinguishable organ-specific targeting capabilities and ligand-mediated kinetics in nanoparticle clearance. These findings expand the toolbox of oxidants for the controllable synthesis of NIR-II nanoprobes and open up a path for exploring diverse ligand interactions on ultrasmall AuNPs with organs or tissues that might advance their monitoring applications for a wide range of clinically important diseases.
ISSN:0003-2700
1520-6882
1520-6882
DOI:10.1021/acs.analchem.4c04326