Bovine testicular heat stress: From climate change to effects on microRNA profile

Heat stress is caused by exposure of animals to high temperatures and humidity, outside their thermal comfort zone. This can have negative outcomes, including adversely affecting general well-being and reducing productive and reproductive performance. In males, heat stress can disrupt testicular the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Animal reproduction science 2024-11, Vol.270, p.107620, Article 107620
Hauptverfasser: Celeghini, Eneiva Carla Carvalho, Baatsch-Nascimento, Fernanda, Bozzi, Alexandre da Rocha, Garcia-Oliveros, Laura Nataly, Arruda, Rubens Paes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heat stress is caused by exposure of animals to high temperatures and humidity, outside their thermal comfort zone. This can have negative outcomes, including adversely affecting general well-being and reducing productive and reproductive performance. In males, heat stress can disrupt testicular thermoregulation, with deleterious effects on spermatogenesis and consequently, decreases in sperm quality and fertility potential. Thus, high environmental temperature is considered one of the most important factors that predisposes bulls to subfertility and has already been the subject of many studies, particularly in tropical or subtropical countries. It is essential to study effects of testicular heat stress in bulls, know the chronology of clinical and sperm findings, and understand the underlying pathophysiology. In addition, elucidating molecular mechanisms involved in heat stress and testicular function could provide the basis for effective, evidence-based strategies for selecting more thermotolerant animals. Excessive heat affects expression of messenger RNA (mRNA) and microRNA (miRNA) in sperm, which have important roles in regulating male fertility. Based on current trends in climate change, the incidence of chronically high temperatures that cause heat stress is expected to increase, posing increasing risks to health and survival of many species. The study of mRNAs and miRNAs can provide valuable insights to select animals that are more resilient to climate change. In addition to the search for more thermotolerant animals, other strategies to mitigate effects of heat stress include reproductive biotechniques and promotion of a better environment. •Testicular heat stress can negatively affect spermatogenesis and semen quality.•Pathophysiology of testicular heat stress: chronology and molecular mechanisms.•Sperm messenger RNA and microRNA expression can be altered by excessive heat stress.•It can be reduced by providing animals with better environmental conditions.•The selection of thermotolerant animals can mitigate the effects of climate change.
ISSN:0378-4320
1873-2232
1873-2232
DOI:10.1016/j.anireprosci.2024.107620