Recognition of MCF-7 breast cancer cells using native collagen probes: Collagen source effect
Developing superior cancer cell recognition probes is crucial for the development of tumor therapy and cancer early screening materials. In this study, we first achieved effective recognition of MCF-7 breast cancer cells using natural collagen probes. Through cell adhesion, cancer cell selective cap...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-12, Vol.282 (Pt 1), p.136661, Article 136661 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Developing superior cancer cell recognition probes is crucial for the development of tumor therapy and cancer early screening materials. In this study, we first achieved effective recognition of MCF-7 breast cancer cells using natural collagen probes. Through cell adhesion, cancer cell selective capture, and flow cytometry techniques, the binding efficiency of mammalian-derived collagens (bovine Achilles tendon collagen, porcine skin collagen) and fish-derived collagens (turbot skin collagen, grass carp skin collagen, mandarin fish skin collagen) to cancer cells (MCF-7 breast cancer cells) and normal cells (human umbilical vein endothelial cells, HUVECs) was analyzed and compared. The feasibility of different source collagens as probes for recognition of MCF-7 cells was explored in vitro. The results indicated that mammalian-derived collagens had a superior advantage over fish-derived collagens in recognizing MCF-7 cells, with bovine Achilles tendon collagen achieving a capture rate of up to 64.7 % in a multicellular co-culture system. Furthermore, in vivo imaging of BALB/c tumor-bearing mice confirmed the high-efficiency targeted recognition performance of the bovine Achilles tendon collagen probe for MCF-7 cells.
[Display omitted] |
---|---|
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.136661 |