Interaction-Induced Multiparticle Bound States in the Continuum

Bound states in the continuum (BICs) are localized modes residing in the radiation continuum. They were first predicted for single-particle states, and became a general feature of many wave systems. In many-body quantum physics, it is still unclear what would be a close analog of BICs, and whether i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2024-10, Vol.133 (14), p.140202, Article 140202
Hauptverfasser: Huang, Boning, Ke, Yongguan, Zhong, Honghua, Kivshar, Yuri S, Lee, Chaohong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bound states in the continuum (BICs) are localized modes residing in the radiation continuum. They were first predicted for single-particle states, and became a general feature of many wave systems. In many-body quantum physics, it is still unclear what would be a close analog of BICs, and whether interparticle interaction may induce BICs. Here, we predict a novel type of multiparticle states in the interaction-modulated Bose-Hubbard model that can be associated with the BIC concept. Under periodic boundary conditions, a so-called quasi-BIC appears as a bound pair residing in a standing wave formed by the third particle. Under open boundary conditions, such a hybrid state becomes an eigenstate of the system. We demonstrate that the Thouless pumping of the quasi-BICs can be realized by modulating the onsite interactions in space and time. Surprisingly, while the center of mass of the quasi-BIC is shifted by a unit cell in one cycle, the bound pair moves in the opposite direction with the standing wave.
ISSN:0031-9007
1079-7114
1079-7114
DOI:10.1103/PhysRevLett.133.140202