Spatially Selective Self-Amplified Imaging of Chemotherapy-Induced Cancer Senescence via Reversal of Impaired Ferritinophagy

Real-time monitoring of chemotherapy-induced senescence (CIS) in cancer remains a challenging task that would lead to new insights into the adaptive mechanisms of cancer therapy and provide guidance for cancer management. Here, we designed a tailor-made nanoprobe capable of imaging CIS in a sequenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2024-10, Vol.96 (43), p.17154-17164
Hauptverfasser: Xie, Yuqi, Luo, Xiyuan, Di, Xinjia, Li, Jili, Xia, Yinghao, Wang, Linlin, Liu, Yanlan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17164
container_issue 43
container_start_page 17154
container_title Analytical chemistry (Washington)
container_volume 96
creator Xie, Yuqi
Luo, Xiyuan
Di, Xinjia
Li, Jili
Xia, Yinghao
Wang, Linlin
Liu, Yanlan
description Real-time monitoring of chemotherapy-induced senescence (CIS) in cancer remains a challenging task that would lead to new insights into the adaptive mechanisms of cancer therapy and provide guidance for cancer management. Here, we designed a tailor-made nanoprobe capable of imaging CIS in a sequential activation and self-amplified manner by reversing senescence-related impaired ferritinophagy. It contains an amphipathic polymer as a spatially responsive vehicle, a Fe2+-activable dye as the reporter, and an autophagy inducer as the signal amplifier. Owing to metabolic changes, the nanoprobe preferentially enriches in senescent cancer cells, leading to in situ activation and fluorescence switching of the reporter by labile Fe2+. Meanwhile, the inducer restores ferritinophagy and promotes autophagic degradation of accumulated ferritin, facilitating conversion of ferritin-bound iron into Fe2+ for amplified imaging in senescent cancer cells yet keeping inert in nonsenescent cells. Of note, the accumulation and activation of the nanoprobe and sustained ferritin degradation occur at the same subcellular location, thus minimizing the diffusion process-induced nonspecific responses. The feasibility of this strategy is successfully demonstrated in both living cells and animal models. This work offers a new way for therapeutic evaluation and a basic understanding of the roles of senescence in cancer treatment.
doi_str_mv 10.1021/acs.analchem.4c02543
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3117992924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126735879</sourcerecordid><originalsourceid>FETCH-LOGICAL-a288t-672f9eeef2b0abf1e7c56e8baaad4905021ddabb91d21724a303b685a424bba33</originalsourceid><addsrcrecordid>eNqNkc1q3DAUhUVoSaZJ3qAUQzfdeKo_W_IyDEk7ECg07dpcydczCvJPJXtgoA9fmZlk0UXpShf0nXOFPkLeM7pmlLPPYOMaevB2j91aWsoLKS7IihWc5qXW_A1ZUUpFzhWlV-RdjM-UMkZZeUmuRCWZllqsyO-nESYH3h-zJ_RoJ3fAZWrzu270rnXYZNsOdq7fZUObbdKyYdpjgPGYb_tmtul-A73FkFI9Rotpzg4Osu94wBDBL7FtN4ILCX3AENzk-mHcw-54Q9624CPens9r8vPh_sfma_747ct2c_eYA9d6ykvF2woRW24omJahskWJ2gBAIytapN9oGjCmYg1niksQVJhSFyC5NAaEuCafTr1jGH7NGKe6c-ml3kOPwxxrwQrJlKJC_QfKVFXxisuEfvwLfR7mkIwsFC-VKLSqEiVPlA1DjAHbegyug3CsGa0XkXUSWb-IrM8iU-zDuXw2HTavoRdzCaAnYIm_Lv5n5x_xs64a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126735879</pqid></control><display><type>article</type><title>Spatially Selective Self-Amplified Imaging of Chemotherapy-Induced Cancer Senescence via Reversal of Impaired Ferritinophagy</title><source>MEDLINE</source><source>ACS Publications</source><creator>Xie, Yuqi ; Luo, Xiyuan ; Di, Xinjia ; Li, Jili ; Xia, Yinghao ; Wang, Linlin ; Liu, Yanlan</creator><creatorcontrib>Xie, Yuqi ; Luo, Xiyuan ; Di, Xinjia ; Li, Jili ; Xia, Yinghao ; Wang, Linlin ; Liu, Yanlan</creatorcontrib><description>Real-time monitoring of chemotherapy-induced senescence (CIS) in cancer remains a challenging task that would lead to new insights into the adaptive mechanisms of cancer therapy and provide guidance for cancer management. Here, we designed a tailor-made nanoprobe capable of imaging CIS in a sequential activation and self-amplified manner by reversing senescence-related impaired ferritinophagy. It contains an amphipathic polymer as a spatially responsive vehicle, a Fe2+-activable dye as the reporter, and an autophagy inducer as the signal amplifier. Owing to metabolic changes, the nanoprobe preferentially enriches in senescent cancer cells, leading to in situ activation and fluorescence switching of the reporter by labile Fe2+. Meanwhile, the inducer restores ferritinophagy and promotes autophagic degradation of accumulated ferritin, facilitating conversion of ferritin-bound iron into Fe2+ for amplified imaging in senescent cancer cells yet keeping inert in nonsenescent cells. Of note, the accumulation and activation of the nanoprobe and sustained ferritin degradation occur at the same subcellular location, thus minimizing the diffusion process-induced nonspecific responses. The feasibility of this strategy is successfully demonstrated in both living cells and animal models. This work offers a new way for therapeutic evaluation and a basic understanding of the roles of senescence in cancer treatment.</description><identifier>ISSN: 0003-2700</identifier><identifier>ISSN: 1520-6882</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.4c02543</identifier><identifier>PMID: 39418483</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>analytical chemistry ; Animal models ; Animals ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Autophagy ; Autophagy - drug effects ; Basic converters ; Cancer ; Cancer therapies ; cancer therapy ; Cell activation ; Cell culture ; Cellular Senescence - drug effects ; Chemotherapy ; Degradation ; Disease management ; dyes ; Ferritin ; Ferritins - chemistry ; Ferritins - metabolism ; fluorescence ; Fluorescent Dyes - chemistry ; Humans ; Imaging ; Iron ; Metabolic rate ; Mice ; Mice, Nude ; Neoplasms - diagnostic imaging ; Neoplasms - drug therapy ; Neoplasms - metabolism ; Optical Imaging ; Polymers ; Senescence ; surfactants</subject><ispartof>Analytical chemistry (Washington), 2024-10, Vol.96 (43), p.17154-17164</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 29, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a288t-672f9eeef2b0abf1e7c56e8baaad4905021ddabb91d21724a303b685a424bba33</cites><orcidid>0000-0002-1757-6810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.4c02543$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.4c02543$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39418483$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Yuqi</creatorcontrib><creatorcontrib>Luo, Xiyuan</creatorcontrib><creatorcontrib>Di, Xinjia</creatorcontrib><creatorcontrib>Li, Jili</creatorcontrib><creatorcontrib>Xia, Yinghao</creatorcontrib><creatorcontrib>Wang, Linlin</creatorcontrib><creatorcontrib>Liu, Yanlan</creatorcontrib><title>Spatially Selective Self-Amplified Imaging of Chemotherapy-Induced Cancer Senescence via Reversal of Impaired Ferritinophagy</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Real-time monitoring of chemotherapy-induced senescence (CIS) in cancer remains a challenging task that would lead to new insights into the adaptive mechanisms of cancer therapy and provide guidance for cancer management. Here, we designed a tailor-made nanoprobe capable of imaging CIS in a sequential activation and self-amplified manner by reversing senescence-related impaired ferritinophagy. It contains an amphipathic polymer as a spatially responsive vehicle, a Fe2+-activable dye as the reporter, and an autophagy inducer as the signal amplifier. Owing to metabolic changes, the nanoprobe preferentially enriches in senescent cancer cells, leading to in situ activation and fluorescence switching of the reporter by labile Fe2+. Meanwhile, the inducer restores ferritinophagy and promotes autophagic degradation of accumulated ferritin, facilitating conversion of ferritin-bound iron into Fe2+ for amplified imaging in senescent cancer cells yet keeping inert in nonsenescent cells. Of note, the accumulation and activation of the nanoprobe and sustained ferritin degradation occur at the same subcellular location, thus minimizing the diffusion process-induced nonspecific responses. The feasibility of this strategy is successfully demonstrated in both living cells and animal models. This work offers a new way for therapeutic evaluation and a basic understanding of the roles of senescence in cancer treatment.</description><subject>analytical chemistry</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Autophagy</subject><subject>Autophagy - drug effects</subject><subject>Basic converters</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>cancer therapy</subject><subject>Cell activation</subject><subject>Cell culture</subject><subject>Cellular Senescence - drug effects</subject><subject>Chemotherapy</subject><subject>Degradation</subject><subject>Disease management</subject><subject>dyes</subject><subject>Ferritin</subject><subject>Ferritins - chemistry</subject><subject>Ferritins - metabolism</subject><subject>fluorescence</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Humans</subject><subject>Imaging</subject><subject>Iron</subject><subject>Metabolic rate</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Neoplasms - diagnostic imaging</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - metabolism</subject><subject>Optical Imaging</subject><subject>Polymers</subject><subject>Senescence</subject><subject>surfactants</subject><issn>0003-2700</issn><issn>1520-6882</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1q3DAUhUVoSaZJ3qAUQzfdeKo_W_IyDEk7ECg07dpcydczCvJPJXtgoA9fmZlk0UXpShf0nXOFPkLeM7pmlLPPYOMaevB2j91aWsoLKS7IihWc5qXW_A1ZUUpFzhWlV-RdjM-UMkZZeUmuRCWZllqsyO-nESYH3h-zJ_RoJ3fAZWrzu270rnXYZNsOdq7fZUObbdKyYdpjgPGYb_tmtul-A73FkFI9Rotpzg4Osu94wBDBL7FtN4ILCX3AENzk-mHcw-54Q9624CPens9r8vPh_sfma_747ct2c_eYA9d6ykvF2woRW24omJahskWJ2gBAIytapN9oGjCmYg1niksQVJhSFyC5NAaEuCafTr1jGH7NGKe6c-ml3kOPwxxrwQrJlKJC_QfKVFXxisuEfvwLfR7mkIwsFC-VKLSqEiVPlA1DjAHbegyug3CsGa0XkXUSWb-IrM8iU-zDuXw2HTavoRdzCaAnYIm_Lv5n5x_xs64a</recordid><startdate>20241029</startdate><enddate>20241029</enddate><creator>Xie, Yuqi</creator><creator>Luo, Xiyuan</creator><creator>Di, Xinjia</creator><creator>Li, Jili</creator><creator>Xia, Yinghao</creator><creator>Wang, Linlin</creator><creator>Liu, Yanlan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-1757-6810</orcidid></search><sort><creationdate>20241029</creationdate><title>Spatially Selective Self-Amplified Imaging of Chemotherapy-Induced Cancer Senescence via Reversal of Impaired Ferritinophagy</title><author>Xie, Yuqi ; Luo, Xiyuan ; Di, Xinjia ; Li, Jili ; Xia, Yinghao ; Wang, Linlin ; Liu, Yanlan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a288t-672f9eeef2b0abf1e7c56e8baaad4905021ddabb91d21724a303b685a424bba33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>analytical chemistry</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Autophagy</topic><topic>Autophagy - drug effects</topic><topic>Basic converters</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>cancer therapy</topic><topic>Cell activation</topic><topic>Cell culture</topic><topic>Cellular Senescence - drug effects</topic><topic>Chemotherapy</topic><topic>Degradation</topic><topic>Disease management</topic><topic>dyes</topic><topic>Ferritin</topic><topic>Ferritins - chemistry</topic><topic>Ferritins - metabolism</topic><topic>fluorescence</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Humans</topic><topic>Imaging</topic><topic>Iron</topic><topic>Metabolic rate</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Neoplasms - diagnostic imaging</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - metabolism</topic><topic>Optical Imaging</topic><topic>Polymers</topic><topic>Senescence</topic><topic>surfactants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Yuqi</creatorcontrib><creatorcontrib>Luo, Xiyuan</creatorcontrib><creatorcontrib>Di, Xinjia</creatorcontrib><creatorcontrib>Li, Jili</creatorcontrib><creatorcontrib>Xia, Yinghao</creatorcontrib><creatorcontrib>Wang, Linlin</creatorcontrib><creatorcontrib>Liu, Yanlan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Yuqi</au><au>Luo, Xiyuan</au><au>Di, Xinjia</au><au>Li, Jili</au><au>Xia, Yinghao</au><au>Wang, Linlin</au><au>Liu, Yanlan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially Selective Self-Amplified Imaging of Chemotherapy-Induced Cancer Senescence via Reversal of Impaired Ferritinophagy</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2024-10-29</date><risdate>2024</risdate><volume>96</volume><issue>43</issue><spage>17154</spage><epage>17164</epage><pages>17154-17164</pages><issn>0003-2700</issn><issn>1520-6882</issn><eissn>1520-6882</eissn><abstract>Real-time monitoring of chemotherapy-induced senescence (CIS) in cancer remains a challenging task that would lead to new insights into the adaptive mechanisms of cancer therapy and provide guidance for cancer management. Here, we designed a tailor-made nanoprobe capable of imaging CIS in a sequential activation and self-amplified manner by reversing senescence-related impaired ferritinophagy. It contains an amphipathic polymer as a spatially responsive vehicle, a Fe2+-activable dye as the reporter, and an autophagy inducer as the signal amplifier. Owing to metabolic changes, the nanoprobe preferentially enriches in senescent cancer cells, leading to in situ activation and fluorescence switching of the reporter by labile Fe2+. Meanwhile, the inducer restores ferritinophagy and promotes autophagic degradation of accumulated ferritin, facilitating conversion of ferritin-bound iron into Fe2+ for amplified imaging in senescent cancer cells yet keeping inert in nonsenescent cells. Of note, the accumulation and activation of the nanoprobe and sustained ferritin degradation occur at the same subcellular location, thus minimizing the diffusion process-induced nonspecific responses. The feasibility of this strategy is successfully demonstrated in both living cells and animal models. This work offers a new way for therapeutic evaluation and a basic understanding of the roles of senescence in cancer treatment.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39418483</pmid><doi>10.1021/acs.analchem.4c02543</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1757-6810</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2024-10, Vol.96 (43), p.17154-17164
issn 0003-2700
1520-6882
1520-6882
language eng
recordid cdi_proquest_miscellaneous_3117992924
source MEDLINE; ACS Publications
subjects analytical chemistry
Animal models
Animals
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Autophagy
Autophagy - drug effects
Basic converters
Cancer
Cancer therapies
cancer therapy
Cell activation
Cell culture
Cellular Senescence - drug effects
Chemotherapy
Degradation
Disease management
dyes
Ferritin
Ferritins - chemistry
Ferritins - metabolism
fluorescence
Fluorescent Dyes - chemistry
Humans
Imaging
Iron
Metabolic rate
Mice
Mice, Nude
Neoplasms - diagnostic imaging
Neoplasms - drug therapy
Neoplasms - metabolism
Optical Imaging
Polymers
Senescence
surfactants
title Spatially Selective Self-Amplified Imaging of Chemotherapy-Induced Cancer Senescence via Reversal of Impaired Ferritinophagy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20Selective%20Self-Amplified%20Imaging%20of%20Chemotherapy-Induced%20Cancer%20Senescence%20via%20Reversal%20of%20Impaired%20Ferritinophagy&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Xie,%20Yuqi&rft.date=2024-10-29&rft.volume=96&rft.issue=43&rft.spage=17154&rft.epage=17164&rft.pages=17154-17164&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.4c02543&rft_dat=%3Cproquest_cross%3E3126735879%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126735879&rft_id=info:pmid/39418483&rfr_iscdi=true