Spatially Selective Self-Amplified Imaging of Chemotherapy-Induced Cancer Senescence via Reversal of Impaired Ferritinophagy

Real-time monitoring of chemotherapy-induced senescence (CIS) in cancer remains a challenging task that would lead to new insights into the adaptive mechanisms of cancer therapy and provide guidance for cancer management. Here, we designed a tailor-made nanoprobe capable of imaging CIS in a sequenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2024-10, Vol.96 (43), p.17154-17164
Hauptverfasser: Xie, Yuqi, Luo, Xiyuan, Di, Xinjia, Li, Jili, Xia, Yinghao, Wang, Linlin, Liu, Yanlan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Real-time monitoring of chemotherapy-induced senescence (CIS) in cancer remains a challenging task that would lead to new insights into the adaptive mechanisms of cancer therapy and provide guidance for cancer management. Here, we designed a tailor-made nanoprobe capable of imaging CIS in a sequential activation and self-amplified manner by reversing senescence-related impaired ferritinophagy. It contains an amphipathic polymer as a spatially responsive vehicle, a Fe2+-activable dye as the reporter, and an autophagy inducer as the signal amplifier. Owing to metabolic changes, the nanoprobe preferentially enriches in senescent cancer cells, leading to in situ activation and fluorescence switching of the reporter by labile Fe2+. Meanwhile, the inducer restores ferritinophagy and promotes autophagic degradation of accumulated ferritin, facilitating conversion of ferritin-bound iron into Fe2+ for amplified imaging in senescent cancer cells yet keeping inert in nonsenescent cells. Of note, the accumulation and activation of the nanoprobe and sustained ferritin degradation occur at the same subcellular location, thus minimizing the diffusion process-induced nonspecific responses. The feasibility of this strategy is successfully demonstrated in both living cells and animal models. This work offers a new way for therapeutic evaluation and a basic understanding of the roles of senescence in cancer treatment.
ISSN:0003-2700
1520-6882
1520-6882
DOI:10.1021/acs.analchem.4c02543