Ultrabroadband and >93% Microwave Absorption Enabled by "Doped" Water Meta-Atom Lattice with Subwavelength Thickness

Perfect microwave absorbers, which absorb electromagnetic waves completely, play pivotal roles in electromagnetic shielding, and stealth technologies. Existing microwave absorber technologies rely on either electromagnetic properties of absorptive materials, the resonance behavior of meta-atoms, or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-10, p.e2411153
Hauptverfasser: Qin, Jin, Shi, Yuzhi, Jiang, Shibin, Gao, Yusong, Yao, Shupei, Wang, Zhanshan, Cheng, Xinbin, Tsai, Din Ping, Zhang, Wu, Zhu, Weiming
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Perfect microwave absorbers, which absorb electromagnetic waves completely, play pivotal roles in electromagnetic shielding, and stealth technologies. Existing microwave absorber technologies rely on either electromagnetic properties of absorptive materials, the resonance behavior of meta-atoms, or a combination of both. So far, achieving simultaneous broadband absorption, high efficiency, and compact sizes remains a great challenge. Inspired by atomic doping techniques employed in conventional optical materials to broaden spectral bandwidths, a single-layer microfluidic metasurface microwave absorber is proposed with the assembly of two distinct types of water meta-atoms. By manipulating electromagnetic resonances of these water meta-atoms, the metasurface maintains impedance matching over a broad working range. A microwave absorber design with a thickness equivalent to 0.2 times the central wavelength is showcased, measuring over 93% absorption across both K and Ka bands (17.5-40.0 GHz). The results highlight unprecedented superiorities of microwave absorbers based on a 2D doped water meta-atom lattice when compared to previously reported metasurface absorbers utilizing identical meta-atoms. This absorber has advantages including small thickness, broad bandwidth, and cost-effectiveness, making it promising for applications in electromagnetic shielding, camouflage, and multi-spectral stealth.
ISSN:0935-9648
1521-4095
1521-4095
DOI:10.1002/adma.202411153