2‑Deoxy-4-epi-scyllo-inosose (DEI) is the Product of EboD, a Highly Conserved Dehydroquinate Synthase-like Enzyme in Bacteria and Eustigmatophyte Algae

A cryptic cluster of genes, known as the ebo cluster, has been found in a variety of genomic contexts among bacteria and algae. In Pseudomonas fluorescens NZI7, the ebo cluster (a.k.a. EDB cluster) is involved in the bacterial repellent mechanism against nematode grazing. In cyanobacteria, the clust...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS chemical biology 2024-11, Vol.19 (11), p.2277-2283
Hauptverfasser: Tanoeyadi, Samuel, Zhou, Wei, Osborn, Andrew R., Tsunoda, Takeshi, Samadi, Arash, Burade, Sachin, Waldo, Ty J., Higgins, Melanie A., Mahmud, Taifo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A cryptic cluster of genes, known as the ebo cluster, has been found in a variety of genomic contexts among bacteria and algae. In Pseudomonas fluorescens NZI7, the ebo cluster (a.k.a. EDB cluster) is involved in the bacterial repellent mechanism against nematode grazing. In cyanobacteria, the cluster plays a role in the transport of the scytonemin monomer from the cytosol to the periplasm. Despite their broad distribution and interesting phenotypes, neither the pathway nor the functions of the enzymes are known. Here we show that EboD proteins from the ebo clusters in Nostoc punctiforme and Sporocytophaga myxococcoides catalyze the cyclization of mannose 6-phosphate to a novel cyclitol, 2-deoxy-4-epi-scyllo-inosose. The enzyme product is postulated to be a precursor of a signaling molecule or a transporter in the organisms. This study sheds the first light onto ebo/EDB pathways and established a functionally distinct enzyme that extends the diversity of sugar phosphate cyclases.
ISSN:1554-8929
1554-8937
1554-8937
DOI:10.1021/acschembio.4c00510