Visualizing and Understanding the Ionic Liquid-Mediated Polybromide Electrochemistry for Aqueous Zinc-Bromine Redox Batteries

Aqueous zinc–bromine redox systems possess multiple merits for scalable energy storage. Applying bromine complexing agents shows effectiveness in alleviating the key challenge of ubiquitous crossover of reactive liquid bromine species, while the underlying microscopic mechanism requires a deep under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2024-10, Vol.24 (43), p.13796-13804
Hauptverfasser: Wang, Chao, Xie, Qihong, Wang, Guotao, Lyu, Yimeng, Wang, Qianhui, Ma, Xinxi, Wang, Haobo, Guo, Taolian, Wu, Yutong, Han, Jie
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aqueous zinc–bromine redox systems possess multiple merits for scalable energy storage. Applying bromine complexing agents shows effectiveness in alleviating the key challenge of ubiquitous crossover of reactive liquid bromine species, while the underlying microscopic mechanism requires a deep understanding to engineer better complexing electrochemistry. Herein, taking a series of quaternary ammonium ionic liquids (methyl4NBr, ethyl4NBr, propyl4NBr, and butyl4NBr) as a redox mediator model, operando optical monitoring was used to visualize the dynamic electrochemical behaviors, unveiling the ionic liquid-mediated polybromide electrochemistry with a distinct chain length effect. A longer chain length possesses a stronger electrostatic interaction in the complexing product to effectively capture Br2. Operando results reveal the liquid nature of the reversibly electrogenerated polybromide microdroplets in the butyl4NBr-added redox system, which promoted the Br3 –/Br– conversion kinetics and alleviated the self-discharge for improved battery performance. This work provides direct evidence and new insights into complexing electrochemistry for advancing Zn-Br2 batteries.
ISSN:1530-6984
1530-6992
1530-6992
DOI:10.1021/acs.nanolett.4c04167