High-Quality Seizure-Like Activity from Acute Brain Slices Using a Complementary Metal-Oxide-Semiconductor High-Density Microelectrode Array System
Complementary metal-oxide-semiconductor high-density microelectrode array (CMOS-HD-MEA) systems can record neurophysiological activity from cell cultures and ex vivo brain slices in unprecedented electrophysiological detail. CMOS-HD-MEAs were first optimized to record high-quality neuronal unit acti...
Gespeichert in:
Veröffentlicht in: | Journal of visualized experiments 2024-09 (211) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Complementary metal-oxide-semiconductor high-density microelectrode array (CMOS-HD-MEA) systems can record neurophysiological activity from cell cultures and ex vivo brain slices in unprecedented electrophysiological detail. CMOS-HD-MEAs were first optimized to record high-quality neuronal unit activity from cell cultures but have also been shown to produce quality data from acute retinal and cerebellar slices. Researchers have recently used CMOS-HD-MEAs to record local field potentials (LFPs) from acute, cortical rodent brain slices. One LFP of interest is seizure-like activity. While many users have produced brief, spontaneous epileptiform discharges using CMOS-HD-MEAs, few users reliably produce quality seizure-like activity. Many factors may contribute to this difficulty, including electrical noise, the inconsistent nature of producing seizure-like activity when using submerged recording chambers, and the limitation that 2D CMOS-MEA chips only record from the surface of the brain slice. The techniques detailed in this protocol should enable users to consistently induce and record high-quality seizure-like activity from acute brain slices with a CMOS-HD-MEA system. In addition, this protocol outlines the proper treatment of CMOS-HD-MEA chips, the management of solutions and brain slices during experimentation, and equipment maintenance. |
---|---|
ISSN: | 1940-087X 1940-087X |
DOI: | 10.3791/67065 |