Vitamin D's Capacity to Increase Amphetamine-Induced Dopamine Release in Healthy Humans: A Clinical Translational 11C-PHNO Positron Emission Tomography Study

Dopaminergic tone and phasic release have transdiagnostic relevance. Preclinical research suggests that the active form of vitamin D, calcitriol, increases subcortical tyrosine hydroxylase, D2/D3 receptors, and amphetamine-stimulated dopamine release in rodents. Comparable studies have not been cond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological psychiatry (1969) 2024-10
Hauptverfasser: Worhunsky, Patrick D, Mignosa, Marcella M, Gallezot, Jean-Dominique, Pittman, Brian, Nabulsi, Nabeel B, Stryjewski, Adam, Jalilian-Khave, Laya, Trinko, Richard, DiLeone, Ralph J, Carson, Richard E, Malison, Robert T, Potenza, Marc N, Angarita, Gustavo A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dopaminergic tone and phasic release have transdiagnostic relevance. Preclinical research suggests that the active form of vitamin D, calcitriol, increases subcortical tyrosine hydroxylase, D2/D3 receptors, and amphetamine-stimulated dopamine release in rodents. Comparable studies have not been conducted in humans.BACKGROUNDDopaminergic tone and phasic release have transdiagnostic relevance. Preclinical research suggests that the active form of vitamin D, calcitriol, increases subcortical tyrosine hydroxylase, D2/D3 receptors, and amphetamine-stimulated dopamine release in rodents. Comparable studies have not been conducted in humans.Healthy, vitamin D-sufficient adults (N = 18, 32.8 ± 6.6 years; 33% female) participated in a randomized, double-blind, placebo-controlled within-subjects study involving 4 total scans over 2 visits consisting of same-day preamphetamine and postamphetamine (0.3 mg/kg) [11C]-PHNO positron emission tomography scanning to examine D2/D3 receptor availability (nondisplaceable binding potential [BPND]) following active calcitriol (1.5 μg night before experimental day and 1.5 μg morning of experimental day) or placebo at least 6 days apart. Parametric images of [11C]-PHNO positron emission tomography BPND were computed using a simplified reference tissue model with the cerebellum as reference. Blood samples were acquired to measure serum calcitriol, amphetamine, and calcium levels. Regions of interest examined were the dorsal caudate, dorsal putamen, ventral striatum, globus pallidus, and substantia nigra.METHODSHealthy, vitamin D-sufficient adults (N = 18, 32.8 ± 6.6 years; 33% female) participated in a randomized, double-blind, placebo-controlled within-subjects study involving 4 total scans over 2 visits consisting of same-day preamphetamine and postamphetamine (0.3 mg/kg) [11C]-PHNO positron emission tomography scanning to examine D2/D3 receptor availability (nondisplaceable binding potential [BPND]) following active calcitriol (1.5 μg night before experimental day and 1.5 μg morning of experimental day) or placebo at least 6 days apart. Parametric images of [11C]-PHNO positron emission tomography BPND were computed using a simplified reference tissue model with the cerebellum as reference. Blood samples were acquired to measure serum calcitriol, amphetamine, and calcium levels. Regions of interest examined were the dorsal caudate, dorsal putamen, ventral striatum, globus pallidus, and substantia nigra.For preamphetamine scans, t
ISSN:1873-2402
1873-2402
DOI:10.1016/j.biopsych.2024.09.028