Role of molybdenum compounds in enhancing denitrification: Structure-activity relationship and the regulatory mechanisms
The effect and regulatory mechanisms of molybdenum compounds (MoO2, MoS2, MoSe2 and MoSi2) on denitrification were investigated by structure-activity relationships, electrochemical characteristics, microbial metabolism analysis and bacterial community distribution. All the assessed molybdenum compou...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2024-11, Vol.367, p.143433, Article 143433 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect and regulatory mechanisms of molybdenum compounds (MoO2, MoS2, MoSe2 and MoSi2) on denitrification were investigated by structure-activity relationships, electrochemical characteristics, microbial metabolism analysis and bacterial community distribution. All the assessed molybdenum compounds exhibited the enhancement effect on denitrification, in the order of MoS2 > MoSi2 > MoSe2 > MoO2, with MoS2 increasing 7.08-fold in 12 h. Analysis of structure-activity relationships suggested that the molybdenum compounds with lower negative redox potential and higher redox reversibility were favorable for promoting denitrification. According to the morphology observation, the interactions between Mo compounds and denitrifying bacteria may be beneficial to extracellular electron transfer. Molybdenum compounds with electron transfer capability facilitated an increase in electron capacitance from 835.1 to 1011.3 μF, promoting the electron exchange rate during denitrification. In the denitrification electron transport chain, the molybdenum compounds upregulated nicotinamide adenine dinucleotide and denitrifying enzyme activity, as well as facilitated the abundance of quinone pools, ATP translocation, and cytochrome c related proteins. Moreover, Mo compounds enriched functional bacteria such as electroactive bacteria and denitrifying functional bacteria. Notably, Mo ions in molybdenum compounds may provide active sites for nitrate reductase, optimizing the electron distribution of the denitrification process and thus improved the partial denitrification efficiency. This work aimed to further understand the regulatory mechanisms of molybdenum on denitrification electron transfer in the compound state and to anticipate the catalytic role of Mo compounds for sustainable water treatment.
[Display omitted]
•MoS2 catalyzed denitrification with the best performance up to 7-fold.•Electron donating capability of Mo compounds was favorable for denitrification.•Mo compounds enhanced electron transfer during denitrification.•Mo compounds increased the activity of key enzyme and metabolism. |
---|---|
ISSN: | 0045-6535 1879-1298 1879-1298 |
DOI: | 10.1016/j.chemosphere.2024.143433 |