Synergistic ferroptosis in triple-negative breast cancer cells: Paclitaxel in combination with Erastin induced oxidative stress and Ferroportin-1 modulation in MDA-MB-231 cells

Ferroptosis is an important regulated cell death mechanism characterized by iron-dependent lipid peroxidation and oxidative stress. In this study, we examined the ferroptosis-inducing effect of the combined use of Paclitaxel, a microtubule-stabilizing agent, and Erastin, a ferroptosis inducer, in br...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Naunyn-Schmiedeberg's archives of pharmacology 2024-10
Hauptverfasser: Bakar-Ates, Filiz, Ozkan, Erva
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ferroptosis is an important regulated cell death mechanism characterized by iron-dependent lipid peroxidation and oxidative stress. In this study, we examined the ferroptosis-inducing effect of the combined use of Paclitaxel, a microtubule-stabilizing agent, and Erastin, a ferroptosis inducer, in breast cancer cells. In this context, the combination of the compounds in question was applied to the cells and the presence of a synergistic effect was determined by calculating the combination index. Glutathione (GSH) levels and glutathione peroxidase (GPX) activity were determined by commercial assay kits, and the effect of the compounds on lipid peroxidation was determined by measurement of malondialdehyde (MDA) levels. Additionally, the effect of combination treatment on ferroptotic protein expression was determined by western blot. Our findings revealed that the combination treatment caused a significant change in mitochondrial function by causing an increase in the depolarized/viable cell population. Additionally, there was a significant increase in intracellular reactive oxygen species (ROS) levels compared to single applications of the compounds. The significant increase observed in malondialdehyde (MDA) levels revealed that the combination treatment increased lipid peroxidation. Moreover, intracellular GSH levels and glutathione peroxidase (GPX) activity significantly decreased by Paclitaxel-Erastin combination. The expression of ferroptosis-regulating proteins was significantly downregulated. The findings showed that the Paclitaxel-Erastin combination synergistically contributed to the accumulation of lipid reactive oxygen species and induced the ferroptotic cell death pathway in breast cancer cells.
ISSN:0028-1298
1432-1912
1432-1912
DOI:10.1007/s00210-024-03523-8