Causal relationships between cerebral cortical structure and preeclampsia: insights from bidirectional Mendelian randomization and colocalization analysis

Abstract Preeclampsia, a multifaceted condition characterized by high blood pressure during pregnancy, is linked to substantial health risks for both the mother and the fetus. Previous studies suggest potential neurological impacts, but the causal relationships between cortical structural changes an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2024-10, Vol.34 (10)
Hauptverfasser: Liu, Qiong, Jiang, Shaoqing, Li, Yan, Zhou, Aiyin, Long, Hanfan, Zhong, Weifen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Preeclampsia, a multifaceted condition characterized by high blood pressure during pregnancy, is linked to substantial health risks for both the mother and the fetus. Previous studies suggest potential neurological impacts, but the causal relationships between cortical structural changes and preeclampsia remain unclear. We utilized genome-wide association study data for cortical thickness (TH) and surface area (SA) across multiple brain regions and preeclampsia. Bidirectional Mendelian randomization (MR) analyses were conducted to assess causality, followed by co-localization analyses to confirm shared genetic architecture. Increased cortical TH in the inferior parietal and supramarginal regions, and an enlarged SA in the postcentral region, were significantly associated with higher preeclampsia risk. Conversely, preeclampsia was linked to increased SA in the supramarginal and middle temporal gyri, and decreased SA in the lingual gyrus. Co-localization analyses indicated distinct genetic determinants for cortical structures and preeclampsia. Our findings reveal bidirectional influences between cortical structural features and preeclampsia, suggesting neuroinflammatory and vascular mechanisms as potential pathways. These insights underscore the importance of considering brain structure in preeclampsia risk assessment and highlight the need for further research into neuroprotective strategies.
ISSN:1047-3211
1460-2199
1460-2199
DOI:10.1093/cercor/bhae400