Design fault directed test generation for microprocessor validation

Functional validation of modern microprocessors is an important and complex problem. One of the problems in functional validation is the generation of test cases that has higher potential to find faults in the design. We propose a model based test generation framework that generates tests for design...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mathaikutty, Deepak A, Shukla, Sandeep K, Kodakara Sreekumar, V, Lilja, David, Dingankar, Ajit
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Functional validation of modern microprocessors is an important and complex problem. One of the problems in functional validation is the generation of test cases that has higher potential to find faults in the design. We propose a model based test generation framework that generates tests for design fault classes inspired from software validation. There are two main contributions in this paper. Firstly, we propose a microprocessor modeling and test generation framework that generates test suites to satisfy Modified Condition Decision Coverage (MCDC), a structural coverage metric that detects most of the classified design faults as well as the remaining faults not covered by MCDC. Secondly, we show that there exists good correlation between types of design faults proposed by software validation and the errors/bugs reported in case studies on microprocessor validation. We demonstrate the framework by modeling and generating tests for the microarchitecture of VESPA, a 32-bit microprocessor. In the results section, we show that the tests generated using our framework's coverage directed approach detects the fault classes with 100% coverage, when compared to model-random test generation.
DOI:10.1145/309847.310108