Pressure-Tuned Quantum Criticality in the Locally Noncentrosymmetric Superconductor CeRh_{2}As_{2}

The unconventional superconductor CeRh_{2}As_{2} (critical temperature T_{c}≈0.4  K) displays an exceptionally rare magnetic-field-induced transition between two distinct superconducting (SC) phases, proposed to be states of even and odd parity of the SC order parameter, which are enabled by a local...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2024-09, Vol.133 (12), p.126506
Hauptverfasser: Pfeiffer, M, Semeniuk, K, Landaeta, J F, Borth, R, Geibel, C, Nicklas, M, Brando, M, Khim, S, Hassinger, E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The unconventional superconductor CeRh_{2}As_{2} (critical temperature T_{c}≈0.4  K) displays an exceptionally rare magnetic-field-induced transition between two distinct superconducting (SC) phases, proposed to be states of even and odd parity of the SC order parameter, which are enabled by a locally noncentrosymmetric structure. The superconductivity is preceded by a phase transition of unknown origin at T_{0}=0.5  K. Electronic low-temperature properties of CeRh_{2}As_{2} show pronounced non-Fermi-liquid behavior, indicative of a proximity to a quantum critical point (QCP). The role of quantum fluctuations and normal state orders for the superconductivity in a system with staggered Rashba interaction is currently an open question, pertinent to explaining the occurrence of the two-phase superconductivity. In this work, using measurements of resistivity and specific heat under hydrostatic pressure, we show that the T_{0} order vanishes completely at a modest pressure of P_{0}≈0.5  GPa, revealing a QCP. In line with the quantum criticality picture, the linear temperature dependence of the resistivity at P_{0} evolves into a Fermi-liquid quadratic dependence as quantum critical fluctuations are suppressed by increasing pressure. Furthermore, the domelike behavior of T_{c} around P_{0} implies that the fluctuations of the T_{0} order are involved in the SC pairing mechanism.
ISSN:1079-7114
1079-7114
DOI:10.1103/PhysRevLett.133.126506