A highly stretchable and self-adhesive cellulose complex hydrogels based on PDA@Fe3+ mediated redox reaction for strain sensor

As the application of conductive hydrogels in the field of wearable smart devices is gradually deepening, a variety of hydrogel sensors with high mechanical properties, strong adhesion, fast self-healing, and excellent conductivity are emerging. However, it is still a great challenge to manufacture...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2024-11, Vol.281 (Pt 1), p.136307, Article 136307
Hauptverfasser: Wang, Jiajun, Li, Wen, Liu, Jiaqi, Li, Jingfang, Wang, Fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As the application of conductive hydrogels in the field of wearable smart devices is gradually deepening, a variety of hydrogel sensors with high mechanical properties, strong adhesion, fast self-healing, and excellent conductivity are emerging. However, it is still a great challenge to manufacture hydrogel sensors combining multiple properties. Herein, we leveraged the dynamic redox reaction occurring between polydopamine (PDA) and Fe3+ to induce ammonium persulfate (APS) to generate free radicals, thereby initiating the copolymerization of hydroxyethyl methacrylate (HEMA) and acrylic acid (AA) monomers. Then, polypyrrole-encapsulated cellulose nanofibers (PPy@CNF) and carboxymethylcellulose (CMC) were incorporated as conductive reinforced nanofillers and interpenetrating network skeleton. The obtained hydrogel cross-linked through reversible metal-ligand bonds, π-π stacking and abundant hydrogen bonding demonstrated great mechanical properties (strength 240.4 kPa, strain 1175 %) and self-healing ability (88.96 %). Particularly, the gel displayed ultrahigh durability and skin adhesive ability (75 kPa after 10 cycles), surpassing previous skin adhesion hydrogels. Furthermore, through the synergistic conductive effect of PPy@CNF and Fe3+, the prepared hydrogel sensor possessed high sensitivity (GF = 1.89) with a wide sensing range (~1000 %), which could realize the human body's daily motion detection, and had a promising application in flexible wearable electronics. [Display omitted] •Dynamic redox reaction of PDA-Fe3+ inspired rapidly composite stretchable hydrogel.•High toughness conductive hydrogel improved by CMC and CNF interpenetration networks•The hydrogel possessed robust adhesion strength (75 kPa to pigskin) after 10 cycles.•Wearable hydrogel sensors indicated wide sensing range (1000 %) and high sensitivity.•Application potential for activities monitoring, information encryption and detection
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2024.136307