Morphology-Mediated Tumor Deep Penetration for Enhanced Near Infrared II Photothermal and Chemotherapy of Colorectal Cancer

The low permeability and heterogeneous distribution of drugs (including nanomedicines) have limited their deep penetration into solid tumors. Herein we report the design of gold nanoparticles with virus-like spikes (AuNVs) to mimic viral shapes and facilitate tumor penetration. Mechanistic studies r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2024-10, Vol.18 (41), p.28038-28051
Hauptverfasser: Wang, Zhenyu, Su, Qianyi, Deng, Wenjia, Wang, Xiao, Zhou, Huimin, Zhang, Miaomiao, Lin, Wenbin, Xiao, Jisheng, Duan, Xiaopin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The low permeability and heterogeneous distribution of drugs (including nanomedicines) have limited their deep penetration into solid tumors. Herein we report the design of gold nanoparticles with virus-like spikes (AuNVs) to mimic viral shapes and facilitate tumor penetration. Mechanistic studies revealed that AuNVs mainly entered cells through macropinocytosis, then transported to the Golgi/endoplasmic reticulum system via Rab11-regulated pathway, and finally exocytosed through recycling endosomes, leading to high cellular uptake, effective transcytosis, and deep tumor penetration compared to gold nanospheres (AuNPs) and gold nanostars (AuNSs). The high tumor accumulation and deep tumor penetration of mitoxantrone (MTO) facilitated by AuNVs endowed effective chemophotothermal therapy when exposed to a near-infrared II laser, significantly reducing tumor sizes in a mouse model of colorectal cancer. This study reveals a potent mechanism of viral-like structures in tissue penetration and highlights their potential as effective drug delivery carriers.
ISSN:1936-0851
1936-086X
1936-086X
DOI:10.1021/acsnano.4c07085