Simultaneously Promoted Water Resistance and CO2 Selectivity in Methanol Oxidation Over Pd/CoOOH: Synergy of Co–OH and the Pd–Olatt–Co Interface

Catalytic purification of industrial oxygenated volatile organic compounds (OVOCs) is hindered by the presence of water vapor that attacks the active sites of conventional noble metal-based catalysts and the insufficient mineralization that leads to the generation of hazardous intermediates. Develop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2024-10, Vol.58 (41), p.18414-18425
Hauptverfasser: Wang, Yadi, Jiang, Zeyu, Wu, Yani, Ai, Chaoqian, Dang, Fan, Xu, Han, Wan, Jialei, Guan, Weisheng, Albilali, Reem, He, Chi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Catalytic purification of industrial oxygenated volatile organic compounds (OVOCs) is hindered by the presence of water vapor that attacks the active sites of conventional noble metal-based catalysts and the insufficient mineralization that leads to the generation of hazardous intermediates. Developing catalysts simultaneously with excellent water resistance and a high intermediate suppression ability is still a great challenge. Herein, we proposed a simple strategy to synthesize a Pd/CoOOH catalyst that contains abundant hydroxyl groups and lattice oxygen species, over which a negligible effect was observed on CH3OH conversion with 3 vol % water vapor, while a remarkable conversion reduction of 24% was observed over Pd/Co3O4. Moreover, the low-temperature CO2 selectivity over Pd/CoOOH is significantly enhanced in comparison with Pd/Co­(OH)2. The high concentration of surface hydroxyl groups on Pd/CoOOH enhances the water resistance owing to the accelerated activation of H2O to generate Co–OH, which replaces the consumed hydroxyl and facilitates the quick dissociation of surface H2O through timely desorption. Additionally, the presence of Pd–Olatt–Co promotes electron transport from Co to Pd, leading to improved metal–support interactions and weakened metal–O bonds. This in turn enhances the catalyst’s capacity to efficaciously convert intermediates. This study sheds new insights into designing multifunctional catalytic platforms for efficient industrial OVOC purification as well as other heterogeneous oxidation reactions.
ISSN:0013-936X
1520-5851
1520-5851
DOI:10.1021/acs.est.4c06229