Self-Matching Assembly of Chiral Gold Nanoparticles Leads to High Optical Asymmetry and Sensitive Detection of Adenosine Triphosphate

To achieve chiral amplification, life uses small chiral molecules as building blocks to construct hierarchical chiral architectures that can realize advanced physiological functions. Inspired by the chiral amplification strategy of nature, we herein demonstrate that the chiral assembly of chiral gol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2024-10, Vol.24 (41), p.13027-13036
Hauptverfasser: Zhang, Ning-Ning, Mychinko, Mikhail, Gao, Shu-Yang, Yu, Linxiuzi, Shen, Zhi-Li, Wang, Liang, Peng, Fei, Wei, Zhonglin, Wang, Zizhun, Zhang, Wei, Zhu, Shoujun, Yang, Yang, Sun, Tianmeng, Liz-Marzán, Luis M., Bals, Sara, Liu, Kun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To achieve chiral amplification, life uses small chiral molecules as building blocks to construct hierarchical chiral architectures that can realize advanced physiological functions. Inspired by the chiral amplification strategy of nature, we herein demonstrate that the chiral assembly of chiral gold nanorods (GNRs) leads to enhanced optical asymmetry factors (g-factors), up to 0.24. The assembly of chiral GNRs, dictated by structural self-matching, leads to g-factors with over 100-fold higher values than those of individual chiral GNRs, as confirmed by numerical simulations. Moreover, the efficient optical asymmetry of chiral GNR assemblies enables their application as highly sensitive sensors of adenosine triphosphate (ATP detection limit of 1.0 μM), with selectivity against adenosine diphosphate and adenosine monophosphate.
ISSN:1530-6984
1530-6992
1530-6992
DOI:10.1021/acs.nanolett.4c03782