Fingerprinting Tertiary Structure in Complex RNAs Using Single-Molecule Correlated Chemical Probing
Single-molecule correlated chemical probing (smCCP) is an experimentally concise strategy for characterizing higher-order structural interactions in RNA. smCCP data yield rich, but complex, information about base pairing, conformational ensembles, and tertiary interactions. To date, through-space co...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2024-10, Vol.63 (20), p.2648-2657 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Single-molecule correlated chemical probing (smCCP) is an experimentally concise strategy for characterizing higher-order structural interactions in RNA. smCCP data yield rich, but complex, information about base pairing, conformational ensembles, and tertiary interactions. To date, through-space communication specifically measuring RNA tertiary structure has been difficult to isolate from structural communication reflective of other interactions. Here, we introduce mutual information as a filtering metric to isolate tertiary structure communication contained within smCCP data and use this strategy to characterize the structural ensemble of the SAM-III riboswitch. We identified an smCCP fingerprint that is selective for states containing a tertiary structure that forms concurrently with cognate ligand binding. We then successfully applied mutual information filters to independent RNAs and isolated through-space tertiary interactions in riboswitches and large RNAs with complex structures. smCCP, coupled with mutual information criteria, can now be used as a tertiary structure discovery tool, including to identify specific states in an ensemble that have a higher-order structure. These studies pave the way for the use of the straightforward smCCP experiment for discovery and characterization of tertiary structure motifs in complex RNAs. |
---|---|
ISSN: | 0006-2960 1520-4995 1520-4995 |
DOI: | 10.1021/acs.biochem.4c00343 |