Evolution of microbial community and resistance genes in denitrification system under single and combined exposure to benzethonium chloride and methylparaben
Benzethonium chloride (BZC) and methylparaben (MeP) are commonly added into cosmetics as preservatives, which are frequently detected in wastewater treatment plants. Different response patterns of denitrification system were proposed under single and combined exposure to BZC and MeP (0, 0.5, 5 mg/L)...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2024-12, Vol.480, p.136010, Article 136010 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Benzethonium chloride (BZC) and methylparaben (MeP) are commonly added into cosmetics as preservatives, which are frequently detected in wastewater treatment plants. Different response patterns of denitrification system were proposed under single and combined exposure to BZC and MeP (0, 0.5, 5 mg/L) by evaluating system performance, functional genes, extracellular polymeric substance (EPS), cytotoxicity, microbial community structure and resistance genes (RGs). The inhibition effect of BZC on denitrification system was stronger than MeP, and the co-exposure of BZC and MeP showed synergistic effect, enhancing the inhibition effect of BZC single exposure. BZC and/or MeP could promote the diffusion of RGs in sludge, including intracellular RGs (si-RGs) and extracellular RGs (se-RGs). Moreover, the single exposure of BZC and co-exposure of BZC and MeP increased the dissemination risks of RGs in water (w-RGs). IntI1 and tnpA-04, mobile genetic elements (MGEs), correlated positively with diverse RGs from different fractions. Notably, the spread of RGs through horizontal gene transfer mediated by MGEs and the flow of si-RGs into extracellular and water were observed in this study.
[Display omitted]
•BZC inhibited the performance of denitrification system, but MeP did not.•Co-exposure of BZC and MeP aggravated the harm of BZC exposure alone.•si/se-RGs were enriched in all systems and w-RGs were enriched exposing to BZC.•BZC induced the transfer of si-RGs/se-RGs to w-RGs of the denitrification system.•TetX and mexF had more potential hosts under exposure of BZC and/or MeP. |
---|---|
ISSN: | 0304-3894 1873-3336 1873-3336 |
DOI: | 10.1016/j.jhazmat.2024.136010 |