Formation and evolution of thermokarst landslides in the Qinghai-Tibet Plateau, China

Thermokarst landslide (TL) activity in the Qinghai-Tibet Plateau (QTP) is intensifying due to climate warming-induced permafrost degradation. However, the mechanisms driving landslide formation and evolution remain poorly understood. This study investigates the spatial distribution, annual frequency...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-12, Vol.954, p.176557, Article 176557
Hauptverfasser: Wei, Tao, Wang, Hao, Cui, Peng, Wang, Yan, Zhang, Bo, Wei, Rui-Long, Liu, Zhen-Xing, Li, Chao-Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thermokarst landslide (TL) activity in the Qinghai-Tibet Plateau (QTP) is intensifying due to climate warming-induced permafrost degradation. However, the mechanisms driving landslide formation and evolution remain poorly understood. This study investigates the spatial distribution, annual frequency, and monthly dynamics of TLs along the Qinghai-Tibet engineering corridor (QTEC), in conjunction with in-situ temperature and rainfall observations, to elucidate the interplay between warming, permafrost degradation, and landslide activity. Through the analysis of high-resolution satellite imagery and field surveys, we identified 1298 landslides along the QTEC between 2016 and 2022, with an additional 386 landslides recorded in a typical landslide-prone sub-area. In 2016, 621 new active-layer detachments (ALDs) were identified, 1.3 times the total historical record. This surge aligned with unprecedented mean annual and August temperatures. The ALDs emerged primarily between late August and early September, coinciding with maximum thaw depth. From 2016 to 2022, 97.8 % of these ALDs evolved into retrogressive thaw slumps (RTSs), identified as active landslides. Landslides typically occur in alpine meadows at moderate altitudes and on gentle northward slopes. The thick ice layer near the permafrost table serves as the material basis for ALD occurrence. Abnormally high temperature significantly increased the active layer thickness (ALT), resulting in melting of the ice layer and formation of a thawed interlayer, which was the direct causing factor for ALD. By altering the local material, micro-topography, and thermal conditions, ALD activity significantly increases RTS susceptibility. Understanding the mechanisms of ALD formation and evolution into RTS provides a theoretical foundation for infrastructure development and disaster mitigation in extreme environments. [Display omitted] •The first discovery of ALDs on the QTP mainly occurred from late August to early September and 97.8% of ALDs evolved into RTSs.•Large-scale ALDs were primarily triggered by extreme high temperatures.•The formation of a thawed interlayer caused by the melting of ice layer was the direct causing factor for ALD.•By altering the local material, micro-topography, and thermal conditions, ALD activity significantly increased RTS susceptibility.•A three-stage model including the mechanisms of ALD formation and the evolution to RTS is proposed for the first time.
ISSN:0048-9697
1879-1026
1879-1026
DOI:10.1016/j.scitotenv.2024.176557