Review of molecular dynamics simulations in laser-based micro/nano-fabrication
Laser technology is integral to the advancement of micro/nano-fabrication. While laser machining offers numerous advantages over alternative micro/nano-fabrication techniques, several challenges and bottlenecks continue to impede its large-scale industrial implementation. In response to these constr...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2024-11, Vol.16 (46), p.21189-21215 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Laser technology is integral to the advancement of micro/nano-fabrication. While laser machining offers numerous advantages over alternative micro/nano-fabrication techniques, several challenges and bottlenecks continue to impede its large-scale industrial implementation. In response to these constraints, the molecular dynamics (MD) method has emerged as a formidable tool for optimizing the process parameters of laser micro/nano-fabrication and investigating alternative laser-based micro/nano-fabrication techniques. In this review, the application of MD in laser-based micro/nano-fabrication is comprehensively examined, including numerical simulations of short-pulse, long-pulse, continued laser and hybrid laser machining. The corresponding MD simulation schemes for lasers with different pulse widths are outlined. The mechanisms of laser-material interactions across diverse processing scenarios and the complete process of laser-based micro/nano-fabrication are also elucidated. Furthermore, the prevailing challenges in this domain and potential solutions are discussed, with future research directions being charted based on current knowledge and technological advancements. |
---|---|
ISSN: | 2040-3364 2040-3372 2040-3372 |
DOI: | 10.1039/d4nr03305a |