Phytic acid-induced durable fire-proof and hydrophobic complex coating for versatile cotton fabrics

To address the current development requirements for multifunctional cotton fabrics, a phytic acid-induced flame-retardant hydrophobic coating containing nitrogen (N), phosphorus (P), and silicon (Si) was grafted on the surface of cotton fabrics using a facile step-by-step immersion method. The limit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2024-11, Vol.281 (Pt 2), p.135733, Article 135733
Hauptverfasser: Yang, Meini, Yan, Chengshu, Huang, Zhenfeng, Yu, Chuanbai, Wang, Yu-Tao, Zhao, Hai-Bo, Rao, Wenhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To address the current development requirements for multifunctional cotton fabrics, a phytic acid-induced flame-retardant hydrophobic coating containing nitrogen (N), phosphorus (P), and silicon (Si) was grafted on the surface of cotton fabrics using a facile step-by-step immersion method. The limiting oxygen index value improved to 31.2 %, decreasing to 26.7 % after 50 laundering cycles, while the fabric remained self-extinguishing effect in the vertical flammability test and showed a water contact angle of 126.1°. Cone calorimetry test showed that the modified fabric could not be ignited at the irradiation heat flux of 35 kW/m2. When the irradiation heat flux was raised to 50 kW/m2, there was a significant decline in the peak heat release rate of the modified cotton fabric, which decreased by 43.2 % to a remarkably low value of 114.0 kW/m2, indicating excellent flame-retardant properties. The analysis of the flame-retardant mechanism uncovered that the modified coating exhibited a significant dual flame-retardant mechanism involving both the gaseous phase and the condensed phase. Additionally, the oil-water separation tests revealed that the separation efficiency of the modified cotton fabrics was as high as 97.1 % and remained around 96 % after 10 cycles, which made them reusable for the clean-up of hazardous chemicals. •A bio-based flame-retardant hydrophobic coating for cotton fabric was developed by a simple immersion method.•The modified cotton fabrics still exhibited self-extinguishing properties even after 50 cycles of washing.•The modified cotton fabrics show outstanding oil-water separation capabilities with an efficiency reaching 97.1 %.•The relevant flame-retardant mechanism was detailed analyzed.
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2024.135733