A robust myoelectric pattern recognition framework based on individual motor unit activities against electrode array shifts

•Our method is the first to improve the robustness of myoelectric pattern recognition against electrode shift by decoding neural drive information from individual MU activities.•The shift calibration and the final pattern recognition were determined by all activated MUs, following the physiological...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods and programs in biomedicine 2024-12, Vol.257, p.108434, Article 108434
Hauptverfasser: Zhao, Haowen, Zhang, Xu, Chen, Xiang, Zhou, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Our method is the first to improve the robustness of myoelectric pattern recognition against electrode shift by decoding neural drive information from individual MU activities.•The shift calibration and the final pattern recognition were determined by all activated MUs, following the physiological co-activation of MUs.•The method can classify dexterous finger movement patterns sufficiently. Electrode shift is always one of the critical factors to compromise the performance of myoelectric pattern recognition (MPR) based on surface electromyogram (SEMG). However, current studies focused on the global features of SEMG signals to mitigate this issue but it is just an oversimplified description of the human movements without incorporating microscopic neural drive information. The objective of this work is to develop a novel method for calibrating the electrode array shifts toward achieving robust MPR, leveraging individual motor unit (MU) activities obtained through advanced SEMG decomposition. All of the MUs from decomposition of SEMG data recorded at the original electrode array position were first initialized to train a neural network for pattern recognition. A part of decomposed MUs could be tracked and paired with MUs obtained at the original position based on spatial distribution of their MUAP waveforms, so as to determine the shift vector (describing both the orientation and distance of the shift) implicated consistently by these multiple MU pairs. Given the known shift vector, the features of the after-shift decomposed MUs were corrected accordingly and then fed into the network to finalize the MPR task. The performance of the proposed method was evaluated with data recorded by a 16 × 8 electrode array placed over the finger extensor muscles of 8 subjects performing 10 finger movement patterns. The proposed method achieved a shift detection accuracy of 100 % and a pattern recognition accuracy approximating to 100 %, significantly outperforming the conventional methods with lower shift detection accuracies and lower pattern recognition accuracies (p < 0.05). Our method demonstrated the feasibility of using decomposed MUAP waveforms’ spatial distributions to calibrate electrode shift. This study provides a new tool to enhance the robustness of myoelectric control systems via microscopic neural drive information at an individual MU level.
ISSN:0169-2607
1872-7565
1872-7565
DOI:10.1016/j.cmpb.2024.108434