Transcranial magnetic stimulation of the right inferior frontal gyrus impairs bilinguals' performance in language-switching tasks

It is widely accepted that bilinguals activate both languages simultaneously, even when intending to speak only one. A prevailing theory proposes that bilinguals inhibit the nontarget language to produce the target language, thought to be supported by evidence that the right inferior frontal gyrus (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cognition 2025-01, Vol.254, p.105963, Article 105963
Hauptverfasser: Wu, Junjie, Ji, Yannan, Qu, Hongfu, Zuo, Shuyue, Liang, Jinsong, Su, Juan, Wang, Qiping, Yan, Guoli, Ding, Guosheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is widely accepted that bilinguals activate both languages simultaneously, even when intending to speak only one. A prevailing theory proposes that bilinguals inhibit the nontarget language to produce the target language, thought to be supported by evidence that the right inferior frontal gyrus (rIFG), a region typically associated with inhibition, is activated during language-switching tasks. However, it remains unclear whether the rIFG plays a causal or epiphenomenal role in this process. To explore the role of the rIFG, the present study employed transcranial magnetic stimulation (TMS) to modulate its neural activity and evaluate subsequent behavior in bilinguals. Specifically, twenty-nine Chinese-English bilinguals participated in the study and performed picture-naming tasks in single- and dual-language contexts after receiving sham stimulation (Sham), continuous theta burst stimulation (cTBS), or intermittent theta burst stimulation (iTBS) over the rIFG in three separate visits. Sham served as a control, with cTBS and iTBS intended to decrease and increase cortical excitability, respectively. We found that, compared to Sham, cTBS led to larger asymmetric switching costs and smaller asymmetric mixing costs, whereas iTBS resulted only in smaller asymmetric mixing costs. These findings suggest that cTBS targeting the rIFG likely impairs both local and global control. However, iTBS applied to the rIFG alone may not necessarily enhance language control mechanisms and could even hinder global control. Moreover, exploratory analyses found pronounced TMS-induced impairments in less balanced bilinguals, implying their potentially greater reliance on bilingual language control. Overall, this study is the first to suggest a causal role of the rIFG in language switching. •The necessity of inhibition in bilingual language control has been long debated.•The role of the rIFG, whether causal or epiphenomenal, is critical to the debate.•We explored this by assessing the aftereffects in language switching post-TMS.•TMS induced changes in asymmetric switching and mixing costs.•Our results first suggest the causal role of the rIFG in language switching.
ISSN:0010-0277
1873-7838
1873-7838
DOI:10.1016/j.cognition.2024.105963